Properties

Label 13134.f.199.a1.a1
Order $ 2 \cdot 3 \cdot 11 $
Index $ 199 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{66}$
Order: \(66\)\(\medspace = 2 \cdot 3 \cdot 11 \)
Index: \(199\)
Exponent: \(66\)\(\medspace = 2 \cdot 3 \cdot 11 \)
Generators: $a^{11}, a^{2}, b^{199}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is maximal, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3,11$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), and a Hall subgroup.

Ambient group ($G$) information

Description: $C_{199}:C_{66}$
Order: \(13134\)\(\medspace = 2 \cdot 3 \cdot 11 \cdot 199 \)
Exponent: \(13134\)\(\medspace = 2 \cdot 3 \cdot 11 \cdot 199 \)
Derived length:$2$

The ambient group is nonabelian and a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times F_{199}$, of order \(78804\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 11 \cdot 199 \)
$\operatorname{Aut}(H)$ $C_2\times C_{10}$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{66}$
Normalizer:$C_{66}$
Normal closure:$C_{199}:C_{66}$
Core:$C_3$
Minimal over-subgroups:$C_{199}:C_{66}$
Maximal under-subgroups:$C_{33}$$C_{22}$$C_6$

Other information

Number of subgroups in this conjugacy class$199$
Möbius function$-1$
Projective image$C_{199}:C_{22}$