Properties

Label 1312.8.4.b1.a1
Order $ 2^{3} \cdot 41 $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_{164}$
Order: \(328\)\(\medspace = 2^{3} \cdot 41 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(164\)\(\medspace = 2^{2} \cdot 41 \)
Generators: $b, c^{41}, b^{2}, c^{2}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_{164}.D_4$
Order: \(1312\)\(\medspace = 2^{5} \cdot 41 \)
Exponent: \(328\)\(\medspace = 2^{3} \cdot 41 \)
Nilpotency class:$3$
Derived length:$2$

The ambient group is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_4$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{40}\times D_4^2.C_2$
$\operatorname{Aut}(H)$ $D_4\times C_{40}$, of order \(320\)\(\medspace = 2^{6} \cdot 5 \)
$\operatorname{res}(S)$$D_4\times C_{40}$, of order \(320\)\(\medspace = 2^{6} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8\)\(\medspace = 2^{3} \)
$W$$C_4$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_2\times C_{164}$
Normalizer:$C_{164}.D_4$
Minimal over-subgroups:$Q_8\times C_{82}$
Maximal under-subgroups:$C_2\times C_{82}$$C_{164}$$C_2\times C_4$
Autjugate subgroups:1312.8.4.b1.b1

Other information

Möbius function$0$
Projective image$C_2^2:C_4$