Properties

Label 13060694016.sl.8._.BI
Order $ 2^{10} \cdot 3^{13} $
Index $ 2^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^6.(C_3^6.C_2^7:S_4)$
Order: \(1632586752\)\(\medspace = 2^{10} \cdot 3^{13} \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Generators: $\langle(5,6)(8,9)(23,24)(26,27), (25,26,27), (28,29,30)(31,32,33), (1,16,2,18,3,17) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $4$

The subgroup is nonabelian and solvable. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $C_3^6.(C_3^6.(C_2^{10}.S_4))$
Order: \(13060694016\)\(\medspace = 2^{13} \cdot 3^{13} \)
Exponent: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Derived length:$5$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(104485552128\)\(\medspace = 2^{16} \cdot 3^{13} \)
$\operatorname{Aut}(H)$ Group of order \(6530347008\)\(\medspace = 2^{12} \cdot 3^{13} \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Normal closure: not computed
Core: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Number of subgroups in this conjugacy class$4$
Möbius function not computed
Projective image not computed