Properties

Label 129600.n.288.c1
Order $ 2 \cdot 3^{2} \cdot 5^{2} $
Index $ 2^{5} \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{15}\times D_{15}$
Order: \(450\)\(\medspace = 2 \cdot 3^{2} \cdot 5^{2} \)
Index: \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $\langle(2,9,3,8,7), (11,16,13)(12,14,15), (11,16,13), (1,7)(2,4)(3,6)(5,8)(9,10)(11,15)(12,13)(14,16), (1,10,5,4,6)(11,13,16)(12,15,14)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Ambient group ($G$) information

Description: $A_5^2:S_3^2$
Order: \(129600\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 5^{2} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_3\wr C_2.A_5^2.C_2^2$
$\operatorname{Aut}(H)$ $D_{30}:C_4^2$, of order \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
$W$$S_3\times D_{10}$, of order \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)

Related subgroups

Centralizer:$C_{15}$
Normalizer:$D_{15}^2:C_2$
Normal closure:$\GL(2,4)\wr C_2$
Core:$C_3^2$
Minimal over-subgroups:$C_5^2:S_3^2$$C_{15}^2:C_2^2$$D_{15}^2$
Maximal under-subgroups:$C_{15}^2$$D_5\times C_{15}$$C_5\times D_{15}$$S_3\times C_{15}$$C_3\times D_{15}$

Other information

Number of subgroups in this autjugacy class$144$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$0$
Projective image$A_5^2:S_3^2$