Properties

Label 129600.n.72.d1
Order $ 2^{3} \cdot 3^{2} \cdot 5^{2} $
Index $ 2^{3} \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{15}^2:C_2$
Order: \(1800\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5^{2} \)
Index: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $\langle(1,7)(2,4)(3,6)(5,8)(9,10)(11,14,13,12,16,15), (1,6)(2,9)(3,7)(4,10)(11,16,13) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $A_5^2:S_3^2$
Order: \(129600\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 5^{2} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_3\wr C_2.A_5^2.C_2^2$
$\operatorname{Aut}(H)$ $C_{15}^2.C_2^2.C_2^3.C_2^3$
$W$$D_5^2:S_3^2$, of order \(3600\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5^{2} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$D_5^2:S_3^2$
Normal closure:$A_5^2:S_3^2$
Core:$C_3:S_3$
Minimal over-subgroups:$D_5^2:S_3^2$
Maximal under-subgroups:$C_5^2:S_3^2$$C_{15}^2:C_2^2$$C_{15}^2:C_2^2$$D_{15}^2$$S_3\times D_5^2$$D_5\times S_3^2$

Other information

Number of subgroups in this autjugacy class$36$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$A_5^2:S_3^2$