Properties

Label 129600.n.2592.f1
Order $ 2 \cdot 5^{2} $
Index $ 2^{5} \cdot 3^{4} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5:D_5$
Order: \(50\)\(\medspace = 2 \cdot 5^{2} \)
Index: \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Generators: $\langle(2,9,7,3,8), (1,6,10,4,5), (1,6)(2,8)(3,9)(5,10)(11,16)(14,15)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $A_5^2:S_3^2$
Order: \(129600\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 5^{2} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_3\wr C_2.A_5^2.C_2^2$
$\operatorname{Aut}(H)$ $C_5^2.\GL(2,5)$, of order \(12000\)\(\medspace = 2^{5} \cdot 3 \cdot 5^{3} \)
$W$$D_5\wr C_2$, of order \(200\)\(\medspace = 2^{3} \cdot 5^{2} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$D_5^2:C_2^2$
Normal closure:$C_3:S_3.A_5.A_5$
Core:$C_1$
Minimal over-subgroups:$C_5:D_{15}$$C_5:D_{15}$$C_5:D_{10}$$D_5^2$$D_5^2$
Maximal under-subgroups:$C_5^2$$D_5$$D_5$$D_5$

Other information

Number of subgroups in this autjugacy class$324$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$A_5^2:S_3^2$