Subgroup ($H$) information
| Description: | $C_5:D_{10}$ |
| Order: | \(100\)\(\medspace = 2^{2} \cdot 5^{2} \) |
| Index: | \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \) |
| Exponent: | \(10\)\(\medspace = 2 \cdot 5 \) |
| Generators: |
$\langle(13,16)(14,15), (2,9,7,3,8), (1,6)(2,8)(3,9)(5,10), (1,6,10,4,5)\rangle$
|
| Derived length: | $2$ |
The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.
Ambient group ($G$) information
| Description: | $A_5^2:S_3^2$ |
| Order: | \(129600\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 5^{2} \) |
| Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
| Derived length: | $2$ |
The ambient group is nonabelian and nonsolvable.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $S_3\wr C_2.A_5^2.C_2^2$ |
| $\operatorname{Aut}(H)$ | $(C_5\times C_{10}):\GL(2,5)$, of order \(24000\)\(\medspace = 2^{6} \cdot 3 \cdot 5^{3} \) |
| $W$ | $D_5\wr C_2$, of order \(200\)\(\medspace = 2^{3} \cdot 5^{2} \) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $324$ |
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | $0$ |
| Projective image | $A_5^2:S_3^2$ |