Properties

Label 12960.cy.96.a1
Order $ 3^{3} \cdot 5 $
Index $ 2^{5} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^2\times C_{15}$
Order: \(135\)\(\medspace = 3^{3} \cdot 5 \)
Index: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Exponent: \(15\)\(\medspace = 3 \cdot 5 \)
Generators: $\langle(1,3,2)(4,5,7), (4,5,7), (1,3,2)(4,7,5)(8,12,11,10,15)(9,13,14), (9,14,13)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and elementary for $p = 3$ (hence hyperelementary).

Ambient group ($G$) information

Description: $(C_3\times \GL(2,4)):S_4$
Order: \(12960\)\(\medspace = 2^{5} \cdot 3^{4} \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^4.Q_8.(S_3\times S_4).S_5$
$\operatorname{Aut}(H)$ $C_4\times \GL(3,3)$, of order \(44928\)\(\medspace = 2^{7} \cdot 3^{3} \cdot 13 \)
$W$$C_4$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_3^2\times C_{15}$
Normalizer:$C_3^3:F_5$
Normal closure:$C_6^2:\GL(2,4)$
Core:$C_3^2$
Minimal over-subgroups:$C_6^2:C_{15}$$D_5\times C_3^3$
Maximal under-subgroups:$C_3\times C_{15}$$C_3\times C_{15}$$C_3^3$

Other information

Number of subgroups in this autjugacy class$24$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$(C_3\times \GL(2,4)):S_4$