Properties

Label 12960.cy.216.a1
Order $ 2^{2} \cdot 3 \cdot 5 $
Index $ 2^{3} \cdot 3^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$A_5$
Order: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Index: \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $\langle(8,10)(11,12), (10,15,11)\rangle$ Copy content Toggle raw display
Derived length: $0$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, simple (hence nonsolvable, perfect, quasisimple, and almost simple), and an A-group.

Ambient group ($G$) information

Description: $(C_3\times \GL(2,4)):S_4$
Order: \(12960\)\(\medspace = 2^{5} \cdot 3^{4} \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and nonsolvable.

Quotient group ($Q$) structure

Description: $C_3^2:S_4$
Order: \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $C_3^4:(S_4\times \GL(2,3))$, of order \(93312\)\(\medspace = 2^{7} \cdot 3^{6} \)
Outer Automorphisms: $C_3^2:\GL(2,3)$, of order \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)
Derived length: $3$

The quotient is nonabelian, monomial (hence solvable), and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^4.Q_8.(S_3\times S_4).S_5$
$\operatorname{Aut}(H)$ $S_5$, of order \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
$W$$S_5$, of order \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)

Related subgroups

Centralizer:$C_3^2\times A_4$
Normalizer:$(C_3\times \GL(2,4)):S_4$
Complements:$C_3^2:S_4$ $C_3^2:S_4$ $C_3^2:S_4$ $C_3^2:S_4$
Minimal over-subgroups:$\GL(2,4)$$\GL(2,4)$$C_2\times A_5$$S_5$
Maximal under-subgroups:$A_4$$D_5$$S_3$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$-2916$
Projective image$(C_3\times \GL(2,4)):S_4$