Subgroup ($H$) information
| Description: | $A_5$ |
| Order: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
| Index: | \(216\)\(\medspace = 2^{3} \cdot 3^{3} \) |
| Exponent: | \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \) |
| Generators: |
$\langle(8,10)(11,12), (10,15,11)\rangle$
|
| Derived length: | $0$ |
The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, simple (hence nonsolvable, perfect, quasisimple, and almost simple), and an A-group.
Ambient group ($G$) information
| Description: | $(C_3\times \GL(2,4)):S_4$ |
| Order: | \(12960\)\(\medspace = 2^{5} \cdot 3^{4} \cdot 5 \) |
| Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
| Derived length: | $3$ |
The ambient group is nonabelian and nonsolvable.
Quotient group ($Q$) structure
| Description: | $C_3^2:S_4$ |
| Order: | \(216\)\(\medspace = 2^{3} \cdot 3^{3} \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Automorphism Group: | $C_3^4:(S_4\times \GL(2,3))$, of order \(93312\)\(\medspace = 2^{7} \cdot 3^{6} \) |
| Outer Automorphisms: | $C_3^2:\GL(2,3)$, of order \(432\)\(\medspace = 2^{4} \cdot 3^{3} \) |
| Derived length: | $3$ |
The quotient is nonabelian, monomial (hence solvable), and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_3^4.Q_8.(S_3\times S_4).S_5$ |
| $\operatorname{Aut}(H)$ | $S_5$, of order \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \) |
| $W$ | $S_5$, of order \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \) |
Related subgroups
Other information
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | $-2916$ |
| Projective image | $(C_3\times \GL(2,4)):S_4$ |