Properties

Label 12960.cy.72.a1
Order $ 2^{2} \cdot 3^{2} \cdot 5 $
Index $ 2^{3} \cdot 3^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$\GL(2,4)$
Order: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Index: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $\langle(8,10)(11,12), (1,2,3)(10,15,11), (1,2,3)\rangle$ Copy content Toggle raw display
Derived length: $1$

The subgroup is normal, a semidirect factor, nonabelian, an A-group, and nonsolvable.

Ambient group ($G$) information

Description: $(C_3\times \GL(2,4)):S_4$
Order: \(12960\)\(\medspace = 2^{5} \cdot 3^{4} \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and nonsolvable.

Quotient group ($Q$) structure

Description: $C_3:S_4$
Order: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $C_6^2:D_6$, of order \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $3$

The quotient is nonabelian, monomial (hence solvable), and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^4.Q_8.(S_3\times S_4).S_5$
$\operatorname{Aut}(H)$ $C_2\times S_5$, of order \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \)
$W$$S_5$, of order \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)

Related subgroups

Centralizer:$C_3^2\times A_4$
Normalizer:$(C_3\times \GL(2,4)):S_4$
Complements:$C_3:S_4$ $C_3:S_4$ $C_3:S_4$ $C_3:S_4$
Minimal over-subgroups:$C_3\times \GL(2,4)$$C_3\times \GL(2,4)$$C_6\times A_5$$C_3:S_5$
Maximal under-subgroups:$A_5$$C_3\times A_4$$C_3\times D_5$$C_3\times S_3$

Other information

Number of subgroups in this autjugacy class$4$
Number of conjugacy classes in this autjugacy class$4$
Möbius function$108$
Projective image$(C_3\times \GL(2,4)):S_4$