Subgroup ($H$) information
Description: | $C_3^4:(C_2^2\times C_4)$ |
Order: | \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \) |
Index: | $1$ |
Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Generators: |
$\left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
2 & 0 & 1 & 0 \\
2 & 2 & 2 & 0 \\
2 & 2 & 1 & 1
\end{array}\right), \left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
1 & 2 & 2 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right), \left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
2 & 0 & 1 & 0 \\
2 & 2 & 2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \left(\begin{array}{rrrr}
2 & 0 & 0 & 0 \\
1 & 2 & 0 & 0 \\
1 & 0 & 2 & 0 \\
1 & 0 & 0 & 2
\end{array}\right), \left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 2
\end{array}\right), \left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 2 & 2 & 1 \\
0 & 1 & 0 & 1 \\
0 & 2 & 2 & 2
\end{array}\right)$
|
Derived length: | $2$ |
The subgroup is the radical (hence characteristic, normal, and solvable), a direct factor, nonabelian, a Hall subgroup, monomial, metabelian, and an A-group.
Ambient group ($G$) information
Description: | $C_3^4:(C_2^2\times C_4)$ |
Order: | \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \) |
Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Derived length: | $2$ |
The ambient group is nonabelian, monomial (hence solvable), metabelian, and an A-group.
Quotient group ($Q$) structure
Description: | $C_1$ |
Order: | $1$ |
Exponent: | $1$ |
Automorphism Group: | $C_1$, of order $1$ |
Outer Automorphisms: | $C_1$, of order $1$ |
Derived length: | $0$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_3^4.C_4^2.C_2^5.C_2^2$ |
$\operatorname{Aut}(H)$ | $C_3^4.C_4^2.C_2^5.C_2^2$ |
$W$ | $C_3^4:(C_2\times C_4)$, of order \(648\)\(\medspace = 2^{3} \cdot 3^{4} \) |
Related subgroups
Centralizer: | $C_2$ | |||
Normalizer: | $C_3^4:(C_2^2\times C_4)$ | |||
Complements: | $C_1$ | |||
Maximal under-subgroups: | $C_3^4:C_2^3$ | $C_2\times C_3^4:C_4$ | $C_3^4:(C_2\times C_4)$ | $C_6^2:C_4$ |
Other information
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | $1$ |
Projective image | $C_3^4:(C_2\times C_4)$ |