Properties

Label 1296.3494.36.p1.d1
Order $ 2^{2} \cdot 3^{2} $
Index $ 2^{2} \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$S_3^2$
Order: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Index: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\left(\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 2 & 0 & 1 & 0 \\ 2 & 2 & 2 & 0 \\ 2 & 2 & 1 & 1 \end{array}\right), \left(\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 1 & 2 & 2 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right), \left(\begin{array}{rrrr} 2 & 1 & 2 & 0 \\ 1 & 2 & 2 & 0 \\ 2 & 2 & 2 & 0 \\ 2 & 2 & 1 & 1 \end{array}\right), \left(\begin{array}{rrrr} 2 & 0 & 0 & 0 \\ 0 & 0 & 2 & 2 \\ 1 & 2 & 0 & 2 \\ 1 & 2 & 1 & 1 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, an A-group, and rational.

Ambient group ($G$) information

Description: $S_3^3:C_6$
Order: \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient set structure

Since this subgroup has trivial core, the ambient group $G$ acts faithfully and transitively on the set of cosets of $H$. The resulting permutation representation is isomorphic to 36T2080.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_3^3:D_6$, of order \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \)
$\operatorname{Aut}(H)$ $\SOPlus(4,2)$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
$\operatorname{res}(S)$$S_3^2$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$S_3^2$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$D_6^2$
Normal closure:$S_3^3$
Core:$C_1$
Minimal over-subgroups:$C_3:S_3^2$$S_3\times D_6$$S_3\times D_6$$S_3\times D_6$
Maximal under-subgroups:$C_3\times S_3$$C_3:S_3$$C_3\times S_3$$D_6$$D_6$
Autjugate subgroups:1296.3494.36.p1.a11296.3494.36.p1.b11296.3494.36.p1.c1

Other information

Number of subgroups in this conjugacy class$9$
Möbius function$0$
Projective image$S_3^3:C_6$