Subgroup ($H$) information
| Description: | $S_3^3$ |
| Order: | \(216\)\(\medspace = 2^{3} \cdot 3^{3} \) |
| Index: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Generators: |
$\left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
2 & 0 & 1 & 0 \\
2 & 2 & 2 & 0 \\
2 & 2 & 1 & 1
\end{array}\right), \left(\begin{array}{rrrr}
2 & 1 & 2 & 0 \\
2 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 \\
2 & 2 & 1 & 1
\end{array}\right), \left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
1 & 2 & 2 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
2 & 0 & 1 & 0 \\
2 & 2 & 2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \left(\begin{array}{rrrr}
2 & 0 & 0 & 0 \\
0 & 0 & 2 & 2 \\
1 & 2 & 0 & 2 \\
1 & 2 & 1 & 1
\end{array}\right), \left(\begin{array}{rrrr}
0 & 1 & 1 & 1 \\
1 & 0 & 0 & 2 \\
0 & 0 & 2 & 0 \\
0 & 0 & 1 & 1
\end{array}\right)$
|
| Derived length: | $2$ |
The subgroup is normal, a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), metabelian, an A-group, and rational.
Ambient group ($G$) information
| Description: | $S_3^3:C_6$ |
| Order: | \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \) |
| Exponent: | \(18\)\(\medspace = 2 \cdot 3^{2} \) |
| Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Quotient group ($Q$) structure
| Description: | $C_6$ |
| Order: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Automorphism Group: | $C_2$, of order \(2\) |
| Outer Automorphisms: | $C_2$, of order \(2\) |
| Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $S_3^3:D_6$, of order \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \) |
| $\operatorname{Aut}(H)$ | $S_3\wr S_3$, of order \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \) |
| $\operatorname{res}(S)$ | $S_3\wr S_3$, of order \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | $1$ |
| $W$ | $S_3\wr C_3$, of order \(648\)\(\medspace = 2^{3} \cdot 3^{4} \) |
Related subgroups
Other information
| Möbius function | $1$ |
| Projective image | $S_3^3:C_6$ |