Properties

Label 1296.3362.6.g1
Order $ 2^{3} \cdot 3^{3} $
Index $ 2 \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6^3$
Order: \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $a^{3}, d^{2}, c, b^{6}, d^{3}, a^{2}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group).

Ambient group ($G$) information

Description: $C_6^2.S_3^2$
Order: \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\PSU(3,2).C_6^2.C_2^6$
$\operatorname{Aut}(H)$ $C_2\times \PSL(2,7)\times \SL(3,3)$, of order \(1886976\)\(\medspace = 2^{8} \cdot 3^{4} \cdot 7 \cdot 13 \)
$\operatorname{res}(S)$$C_2\times D_4\times \GL(2,3)$, of order \(768\)\(\medspace = 2^{8} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_6^3$
Normalizer:$C_6^3:C_2$
Normal closure:$C_3:C_6^3$
Core:$C_3\times C_6^2$
Minimal over-subgroups:$C_3:C_6^3$$C_6^3:C_2$
Maximal under-subgroups:$C_3\times C_6^2$$C_3\times C_6^2$$C_3\times C_6^2$$C_2\times C_6^2$$C_2\times C_6^2$$C_2\times C_6^2$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$1$
Projective image$C_3:S_3^2$