Subgroup ($H$) information
Description: | $C_2$ |
Order: | \(2\) |
Index: | \(648\)\(\medspace = 2^{3} \cdot 3^{4} \) |
Exponent: | \(2\) |
Generators: |
$\left(\begin{array}{rrrr}
2 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 2
\end{array}\right)$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is the center (hence characteristic, normal, abelian, central, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a direct factor, cyclic (hence elementary, hyperelementary, metacyclic, and a Z-group), a $p$-group, simple, and rational.
Ambient group ($G$) information
Description: | $C_3^2:D_6^2$ |
Order: | \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \) |
Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
Derived length: | $3$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), and rational.
Quotient group ($Q$) structure
Description: | $C_3.S_3^3$ |
Order: | \(648\)\(\medspace = 2^{3} \cdot 3^{4} \) |
Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
Automorphism Group: | $S_3\times \He_3:D_4$, of order \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \) |
Outer Automorphisms: | $C_2$, of order \(2\) |
Nilpotency class: | $-1$ |
Derived length: | $3$ |
The quotient is nonabelian, supersolvable (hence solvable and monomial), and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $(C_3\times \He_3).C_2^6.C_2$ |
$\operatorname{Aut}(H)$ | $C_1$, of order $1$ |
$\operatorname{res}(\operatorname{Aut}(G))$ | $C_1$, of order $1$ |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(10368\)\(\medspace = 2^{7} \cdot 3^{4} \) |
$W$ | $C_1$, of order $1$ |
Related subgroups
Centralizer: | $C_3^2:D_6^2$ | |||||||||||
Normalizer: | $C_3^2:D_6^2$ | |||||||||||
Complements: | $C_3.S_3^3$ | |||||||||||
Minimal over-subgroups: | $C_6$ | $C_6$ | $C_6$ | $C_6$ | $C_6$ | $C_6$ | $C_6$ | $C_2^2$ | $C_2^2$ | $C_2^2$ | $C_2^2$ | $C_2^2$ |
Maximal under-subgroups: | $C_1$ |
Other information
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | $0$ |
Projective image | $C_3.S_3^3$ |