Properties

Label 1296.2985.324.e1
Order $ 2^{2} $
Index $ 2^{2} \cdot 3^{4} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Index: \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)
Exponent: \(2\)
Generators: $\left(\begin{array}{rrrr} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{array}\right), \left(\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 2 & 0 & 2 & 0 \\ 1 & 0 & 0 & 2 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Ambient group ($G$) information

Description: $C_3^2:D_6^2$
Order: \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_3\times \He_3).C_2^6.C_2$
$\operatorname{Aut}(H)$ $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\operatorname{res}(S)$$C_2$, of order \(2\)
$\card{\operatorname{ker}(\operatorname{res})}$\(96\)\(\medspace = 2^{5} \cdot 3 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_2^2\times D_6$
Normalizer:$C_2^2\times D_6$
Normal closure:$C_3^2:D_6$
Core:$C_2$
Minimal over-subgroups:$C_2\times C_6$$D_6$$D_6$$D_6$$D_6$$D_6$$C_2^3$$C_2^3$$C_2^3$
Maximal under-subgroups:$C_2$$C_2$

Other information

Number of subgroups in this autjugacy class$54$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$0$
Projective image$C_3.S_3^3$