Properties

Label 1296.2960.9.b1
Order $ 2^{4} \cdot 3^{2} $
Index $ 3^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2:C_6^2$
Order: \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Index: \(9\)\(\medspace = 3^{2} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $d^{3}, c^{3}, bc^{3}, e^{3}, ae^{2}, d^{2}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, a semidirect factor, nonabelian, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_3^2.A_4^2$
Order: \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian and metabelian (hence solvable). Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_3^2$
Order: \(9\)\(\medspace = 3^{2} \)
Exponent: \(3\)
Automorphism Group: $\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
Outer Automorphisms: $\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^4.C_3^4.S_3^3.C_2$
$\operatorname{Aut}(H)$ $S_4\times S_3^2$, of order \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
$\operatorname{res}(S)$$C_6^2:D_6$, of order \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(216\)\(\medspace = 2^{3} \cdot 3^{3} \)
$W$$C_3\times A_4$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_6^2$
Normalizer:$C_3^2.A_4^2$
Complements:$C_3^2$ $C_3^2$
Minimal over-subgroups:$A_4\times C_6^2$$C_3.A_4^2$
Maximal under-subgroups:$C_6\times A_4$$C_2^3\times C_6$$C_2^2\times A_4$$C_6^2$

Other information

Number of subgroups in this autjugacy class$6$
Number of conjugacy classes in this autjugacy class$6$
Möbius function$3$
Projective image$C_3\times A_4^2$