Properties

Label 1296.2960.1.a1
Order $ 2^{4} \cdot 3^{4} $
Index $ 1 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^2.A_4^2$
Order: \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)
Index: $1$
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $a, bc^{3}, c^{3}, c^{2}, d^{2}, e^{3}, d^{3}e^{3}, e^{2}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is the radical (hence characteristic, normal, and solvable), a direct factor, nonabelian, a Hall subgroup, and metabelian. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $C_3^2.A_4^2$
Order: \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian and metabelian (hence solvable). Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_1$
Order: $1$
Exponent: $1$
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $0$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^4.C_3^4.S_3^3.C_2$
$\operatorname{Aut}(H)$ $C_2^4.C_3^4.S_3^3.C_2$
$W$$A_4^2$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_3^2$
Normalizer:$C_3^2.A_4^2$
Complements:$C_1$
Maximal under-subgroups:$A_4\times C_6^2$$C_6^2:A_4$$C_3.A_4^2$$C_3^3:A_4$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$1$
Projective image$A_4^2$