Properties

Label 1296.2960.12.b1
Order $ 2^{2} \cdot 3^{3} $
Index $ 2^{2} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3\times C_6^2$
Order: \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $d^{3}, d^{2}, e^{3}, a, e^{2}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group).

Ambient group ($G$) information

Description: $C_3^2.A_4^2$
Order: \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian and metabelian (hence solvable). Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^4.C_3^4.S_3^3.C_2$
$\operatorname{Aut}(H)$ $S_3\times \GL(3,3)$, of order \(67392\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 13 \)
$\operatorname{res}(S)$$C_2\times C_3^2:S_3^2$, of order \(648\)\(\medspace = 2^{3} \cdot 3^{4} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
$W$$C_3$, of order \(3\)

Related subgroups

Centralizer:$C_3\times C_6^2$
Normalizer:$C_3^3:A_4$
Normal closure:$A_4\times C_6^2$
Core:$C_6^2$
Minimal over-subgroups:$A_4\times C_6^2$$C_3^3:A_4$
Maximal under-subgroups:$C_3^2\times C_6$$C_6^2$$C_6^2$$C_6^2$

Other information

Number of subgroups in this autjugacy class$8$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$1$
Projective image$A_4^2$