Properties

Label 1280.1116446.5.a1
Order $ 2^{8} $
Index $ 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^5:D_4$
Order: \(256\)\(\medspace = 2^{8} \)
Index: \(5\)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\langle(2,4)(5,8)(6,7)(9,10)(11,12)(13,14), (1,3)(8,10), (1,3)(2,6)(4,7)(5,9)(8,10) \!\cdots\! \rangle$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is maximal, nonabelian, a $2$-Sylow subgroup (hence nilpotent, solvable, supersolvable, a Hall subgroup, and monomial), a $p$-group (hence elementary and hyperelementary), metabelian, and rational.

Ambient group ($G$) information

Description: $C_2^6:D_{10}$
Order: \(1280\)\(\medspace = 2^{8} \cdot 5 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$F_{16}.C_2^4.C_2^3$
$\operatorname{Aut}(H)$ $C_2^{15}.C_2^4.\PSL(2,7)$
$\operatorname{res}(S)$$(C_2^2\times A_4) . (C_2^3\times C_4)$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$C_2^4$, of order \(16\)\(\medspace = 2^{4} \)

Related subgroups

Centralizer:$C_2^4$
Normalizer:$C_2^5:D_4$
Normal closure:$C_2^6:D_{10}$
Core:$C_2^7$
Minimal over-subgroups:$C_2^6:D_{10}$
Maximal under-subgroups:$C_2^7$$C_2^4:D_4$$C_2^5:C_4$$C_2^4:D_4$$C_2^5:C_4$$C_2^4:D_4$$C_2^5:C_4$$C_2^3\wr C_2$$C_2^3\wr C_2$

Other information

Number of subgroups in this autjugacy class$5$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$-1$
Projective image$C_2\wr D_5$