Subgroup ($H$) information
Description: | $C_2^5:D_4$ |
Order: | \(256\)\(\medspace = 2^{8} \) |
Index: | \(5\) |
Exponent: | \(4\)\(\medspace = 2^{2} \) |
Generators: |
$\langle(2,4)(5,8)(6,7)(9,10)(11,12)(13,14), (1,3)(8,10), (1,3)(2,6)(4,7)(5,9)(8,10) \!\cdots\! \rangle$
|
Nilpotency class: | $2$ |
Derived length: | $2$ |
The subgroup is maximal, nonabelian, a $2$-Sylow subgroup (hence nilpotent, solvable, supersolvable, a Hall subgroup, and monomial), a $p$-group (hence elementary and hyperelementary), metabelian, and rational.
Ambient group ($G$) information
Description: | $C_2^6:D_{10}$ |
Order: | \(1280\)\(\medspace = 2^{8} \cdot 5 \) |
Exponent: | \(20\)\(\medspace = 2^{2} \cdot 5 \) |
Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $F_{16}.C_2^4.C_2^3$ |
$\operatorname{Aut}(H)$ | $C_2^{15}.C_2^4.\PSL(2,7)$ |
$\operatorname{res}(S)$ | $(C_2^2\times A_4) . (C_2^3\times C_4)$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(4\)\(\medspace = 2^{2} \) |
$W$ | $C_2^4$, of order \(16\)\(\medspace = 2^{4} \) |
Related subgroups
Other information
Number of subgroups in this autjugacy class | $5$ |
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | $-1$ |
Projective image | $C_2\wr D_5$ |