Properties

Label 1280.1116308.8.D
Order $ 2^{5} \cdot 5 $
Index $ 2^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^4\times C_{10}$
Order: \(160\)\(\medspace = 2^{5} \cdot 5 \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Generators: $\left(\begin{array}{rr} 31 & 20 \\ 30 & 1 \end{array}\right), \left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 1 & 20 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 21 & 0 \\ 0 & 21 \end{array}\right), \left(\begin{array}{rr} 9 & 0 \\ 0 & 9 \end{array}\right), \left(\begin{array}{rr} 11 & 20 \\ 20 & 31 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, a semidirect factor, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), and elementary for $p = 2$ (hence hyperelementary).

Ambient group ($G$) information

Description: $F_5\times C_2^6$
Order: \(1280\)\(\medspace = 2^{8} \cdot 5 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $C_2\times C_4$
Order: \(8\)\(\medspace = 2^{3} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $D_4$, of order \(8\)\(\medspace = 2^{3} \)
Outer Automorphisms: $D_4$, of order \(8\)\(\medspace = 2^{3} \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^6.\GL(6,2)\times F_5$
$\operatorname{Aut}(H)$ $C_4\times \GL(5,2)$, of order \(39997440\)\(\medspace = 2^{12} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 31 \)
$\card{\operatorname{res}(S)}$\(39997440\)\(\medspace = 2^{12} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 31 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(10240\)\(\medspace = 2^{11} \cdot 5 \)
$W$$C_4$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_2^5\times C_{10}$
Normalizer:$F_5\times C_2^6$
Complements:$C_2\times C_4$
Minimal over-subgroups:$C_2^4\times D_{10}$$C_2^4\times D_{10}$$C_2^5\times C_{10}$
Maximal under-subgroups:$C_2^3\times C_{10}$$C_2^5$

Other information

Number of subgroups in this autjugacy class$63$
Number of conjugacy classes in this autjugacy class$63$
Möbius function$0$
Projective image$C_2\times F_5$