Properties

Label 128.993.4.c1.b1
Order $ 2^{5} $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{32}$
Order: \(32\)\(\medspace = 2^{5} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(32\)\(\medspace = 2^{5} \)
Generators: $ac$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), and a $p$-group.

Ambient group ($G$) information

Description: $C_2\times Q_{64}$
Order: \(128\)\(\medspace = 2^{7} \)
Exponent: \(32\)\(\medspace = 2^{5} \)
Nilpotency class:$5$
Derived length:$2$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_8^2.C_8:C_2^3$, of order \(4096\)\(\medspace = 2^{12} \)
$\operatorname{Aut}(H)$ $C_2\times C_8$, of order \(16\)\(\medspace = 2^{4} \)
$\operatorname{res}(S)$$C_2\times C_8$, of order \(16\)\(\medspace = 2^{4} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(128\)\(\medspace = 2^{7} \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_2\times C_{32}$
Normalizer:$C_2\times Q_{64}$
Minimal over-subgroups:$C_2\times C_{32}$$Q_{64}$$Q_{64}$
Maximal under-subgroups:$C_{16}$
Autjugate subgroups:128.993.4.c1.a1

Other information

Möbius function$2$
Projective image$C_2\times D_{16}$