Properties

Label 4096.buz
Order \( 2^{12} \)
Exponent \( 2^{5} \)
Nilpotent yes
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{6} \)
$\card{Z(G)}$ 2
$\card{\Aut(G)}$ \( 2^{16} \)
$\card{\mathrm{Out}(G)}$ \( 2^{5} \)
Perm deg. $64$
Trans deg. not computed
Rank $5$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 64 | (1,2)(3,4)(5,14)(6,13)(7,16)(8,15)(9,26)(10,25)(11,28)(12,27)(17,50)(18,49)(19,52)(20,51)(21,62)(22,61)(23,64)(24,63)(29,54)(30,53)(31,56)(32,55)(33,34)(35,36)(37,46)(38,45)(39,48)(40,47)(41,58)(42,57)(43,60)(44,59), (2,18,34,50)(4,20,36,52)(5,37)(6,54,38,22)(7,39)(8,56,40,24)(10,26,42,58)(12,28,44,60)(13,45)(14,62,46,30)(15,47)(16,64,48,32)(21,53)(23,55)(29,61)(31,63), (1,13)(3,15)(5,9)(6,14)(7,11)(8,16)(10,26)(12,28)(17,61)(18,50)(19,63)(20,52)(21,57)(22,62)(23,59)(24,64)(25,53)(27,55)(29,49)(30,54)(31,51)(32,56)(33,45)(35,47)(37,41)(38,46)(39,43)(40,48)(42,58)(44,60), (2,34)(4,36)(6,38)(8,40)(10,42)(12,44)(14,46)(16,48)(18,50)(20,52)(22,54)(24,56)(26,58)(28,60)(30,62)(32,64), (2,4)(6,8)(10,12)(14,16)(18,20)(22,24)(26,28)(30,32)(34,36)(38,40)(42,44)(46,48)(50,52)(54,56)(58,60)(62,64), (2,10,18,26,34,42,50,58)(4,12,20,28,36,44,52,60)(5,21,37,53)(6,30,54,14,38,62,22,46)(7,23,39,55)(8,32,56,16,40,64,24,48)(9,41)(11,43)(13,61,45,29)(15,63,47,31)(25,57)(27,59), (2,6)(4,8)(5,13)(7,15)(9,25)(10,30)(11,27)(12,32)(14,26)(16,28)(17,49)(18,54)(19,51)(20,56)(21,61)(22,50)(23,63)(24,52)(29,53)(31,55)(34,38)(36,40)(37,45)(39,47)(41,57)(42,62)(43,59)(44,64)(46,58)(48,60), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (3,35)(4,36)(7,39)(8,40)(11,43)(12,44)(15,47)(16,48)(19,51)(20,52)(23,55)(24,56)(27,59)(28,60)(31,63)(32,64) >;
 
Copy content gap:G := Group( (1,2)(3,4)(5,14)(6,13)(7,16)(8,15)(9,26)(10,25)(11,28)(12,27)(17,50)(18,49)(19,52)(20,51)(21,62)(22,61)(23,64)(24,63)(29,54)(30,53)(31,56)(32,55)(33,34)(35,36)(37,46)(38,45)(39,48)(40,47)(41,58)(42,57)(43,60)(44,59), (2,18,34,50)(4,20,36,52)(5,37)(6,54,38,22)(7,39)(8,56,40,24)(10,26,42,58)(12,28,44,60)(13,45)(14,62,46,30)(15,47)(16,64,48,32)(21,53)(23,55)(29,61)(31,63), (1,13)(3,15)(5,9)(6,14)(7,11)(8,16)(10,26)(12,28)(17,61)(18,50)(19,63)(20,52)(21,57)(22,62)(23,59)(24,64)(25,53)(27,55)(29,49)(30,54)(31,51)(32,56)(33,45)(35,47)(37,41)(38,46)(39,43)(40,48)(42,58)(44,60), (2,34)(4,36)(6,38)(8,40)(10,42)(12,44)(14,46)(16,48)(18,50)(20,52)(22,54)(24,56)(26,58)(28,60)(30,62)(32,64), (2,4)(6,8)(10,12)(14,16)(18,20)(22,24)(26,28)(30,32)(34,36)(38,40)(42,44)(46,48)(50,52)(54,56)(58,60)(62,64), (2,10,18,26,34,42,50,58)(4,12,20,28,36,44,52,60)(5,21,37,53)(6,30,54,14,38,62,22,46)(7,23,39,55)(8,32,56,16,40,64,24,48)(9,41)(11,43)(13,61,45,29)(15,63,47,31)(25,57)(27,59), (2,6)(4,8)(5,13)(7,15)(9,25)(10,30)(11,27)(12,32)(14,26)(16,28)(17,49)(18,54)(19,51)(20,56)(21,61)(22,50)(23,63)(24,52)(29,53)(31,55)(34,38)(36,40)(37,45)(39,47)(41,57)(42,62)(43,59)(44,64)(46,58)(48,60), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (3,35)(4,36)(7,39)(8,40)(11,43)(12,44)(15,47)(16,48)(19,51)(20,52)(23,55)(24,56)(27,59)(28,60)(31,63)(32,64) );
 
Copy content sage:G = PermutationGroup(['(1,2)(3,4)(5,14)(6,13)(7,16)(8,15)(9,26)(10,25)(11,28)(12,27)(17,50)(18,49)(19,52)(20,51)(21,62)(22,61)(23,64)(24,63)(29,54)(30,53)(31,56)(32,55)(33,34)(35,36)(37,46)(38,45)(39,48)(40,47)(41,58)(42,57)(43,60)(44,59)', '(2,18,34,50)(4,20,36,52)(5,37)(6,54,38,22)(7,39)(8,56,40,24)(10,26,42,58)(12,28,44,60)(13,45)(14,62,46,30)(15,47)(16,64,48,32)(21,53)(23,55)(29,61)(31,63)', '(1,13)(3,15)(5,9)(6,14)(7,11)(8,16)(10,26)(12,28)(17,61)(18,50)(19,63)(20,52)(21,57)(22,62)(23,59)(24,64)(25,53)(27,55)(29,49)(30,54)(31,51)(32,56)(33,45)(35,47)(37,41)(38,46)(39,43)(40,48)(42,58)(44,60)', '(2,34)(4,36)(6,38)(8,40)(10,42)(12,44)(14,46)(16,48)(18,50)(20,52)(22,54)(24,56)(26,58)(28,60)(30,62)(32,64)', '(2,4)(6,8)(10,12)(14,16)(18,20)(22,24)(26,28)(30,32)(34,36)(38,40)(42,44)(46,48)(50,52)(54,56)(58,60)(62,64)', '(2,10,18,26,34,42,50,58)(4,12,20,28,36,44,52,60)(5,21,37,53)(6,30,54,14,38,62,22,46)(7,23,39,55)(8,32,56,16,40,64,24,48)(9,41)(11,43)(13,61,45,29)(15,63,47,31)(25,57)(27,59)', '(2,6)(4,8)(5,13)(7,15)(9,25)(10,30)(11,27)(12,32)(14,26)(16,28)(17,49)(18,54)(19,51)(20,56)(21,61)(22,50)(23,63)(24,52)(29,53)(31,55)(34,38)(36,40)(37,45)(39,47)(41,57)(42,62)(43,59)(44,64)(46,58)(48,60)', '(1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64)', '(3,35)(4,36)(7,39)(8,40)(11,43)(12,44)(15,47)(16,48)(19,51)(20,52)(23,55)(24,56)(27,59)(28,60)(31,63)(32,64)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(1455097142141690556525031748939668455879906895734835283917287661614014877573354384796869251413909155512746239382116829446836920189580799,4096)'); a = G.1; b = G.3; c = G.4; d = G.7; e = G.9; f = G.11;
 

Group information

Description:$C_8^2.C_8:C_2^3$
Order: \(4096\)\(\medspace = 2^{12} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(32\)\(\medspace = 2^{5} \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$C_2^2\times (C_2\times C_4).C_2^5.C_2^6$, of order \(65536\)\(\medspace = 2^{16} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 12
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Nilpotency class:$5$
Copy content comment:Nilpotency class of the group
 
Copy content magma:NilpotencyClass(G);
 
Copy content gap:NilpotencyClassOfGroup(G);
 
Copy content sage_gap:G.NilpotencyClassOfGroup()
 
Derived length:$2$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 4 8 16 32
Elements 1 287 608 1152 1024 1024 4096
Conjugacy classes   1 19 34 62 44 24 184
Divisions 1 19 30 34 24 14 122
Autjugacy classes 1 11 23 41 30 8 114

Copy content comment:Compute statistics about the characters of G
 
Copy content magma:// Outputs [<d_1,c_1>, <d_2,c_2>, ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content gap:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content sage:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i character_degrees = [c[0] for c in G.character_table()] [[n, character_degrees.count(n)] for n in set(character_degrees)]
 
Copy content sage_gap:G.CharacterDegrees()
 

Dimension 1 2 4 8 16 32
Irr. complex chars.   64 80 24 12 2 2 184
Irr. rational chars. 32 40 24 18 6 2 122

Minimal presentations

Permutation degree:$64$
Transitive degree:not computed
Rank: $5$
Inequivalent generating 5-tuples: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 32 32 32
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f \mid e^{4}=f^{4}=[a,e]=[a,f]=[b,f]=[d,f]=1, a^{4}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([12, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 24, 6157, 75026, 2390, 24218, 100227, 3279, 6843, 135, 131524, 61936, 2668, 172, 149765, 2909, 4961, 177414, 76638, 39690, 246, 52255, 1627, 65696, 32876, 15608, 1376, 320, 76833, 38445, 50734, 1690, 394]); a,b,c,d,e,f := Explode([G.1, G.3, G.4, G.7, G.9, G.11]); AssignNames(~G, ["a", "a2", "b", "c", "c2", "c4", "d", "d2", "e", "e2", "f", "f2"]);
 
Copy content gap:G := PcGroupCode(1455097142141690556525031748939668455879906895734835283917287661614014877573354384796869251413909155512746239382116829446836920189580799,4096); a := G.1; b := G.3; c := G.4; d := G.7; e := G.9; f := G.11;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(1455097142141690556525031748939668455879906895734835283917287661614014877573354384796869251413909155512746239382116829446836920189580799,4096)'); a = G.1; b = G.3; c = G.4; d = G.7; e = G.9; f = G.11;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(1455097142141690556525031748939668455879906895734835283917287661614014877573354384796869251413909155512746239382116829446836920189580799,4096)'); a = G.1; b = G.3; c = G.4; d = G.7; e = G.9; f = G.11;
 
Permutation group:Degree $64$ $\langle(1,2)(3,4)(5,14)(6,13)(7,16)(8,15)(9,26)(10,25)(11,28)(12,27)(17,50)(18,49) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 64 | (1,2)(3,4)(5,14)(6,13)(7,16)(8,15)(9,26)(10,25)(11,28)(12,27)(17,50)(18,49)(19,52)(20,51)(21,62)(22,61)(23,64)(24,63)(29,54)(30,53)(31,56)(32,55)(33,34)(35,36)(37,46)(38,45)(39,48)(40,47)(41,58)(42,57)(43,60)(44,59), (2,18,34,50)(4,20,36,52)(5,37)(6,54,38,22)(7,39)(8,56,40,24)(10,26,42,58)(12,28,44,60)(13,45)(14,62,46,30)(15,47)(16,64,48,32)(21,53)(23,55)(29,61)(31,63), (1,13)(3,15)(5,9)(6,14)(7,11)(8,16)(10,26)(12,28)(17,61)(18,50)(19,63)(20,52)(21,57)(22,62)(23,59)(24,64)(25,53)(27,55)(29,49)(30,54)(31,51)(32,56)(33,45)(35,47)(37,41)(38,46)(39,43)(40,48)(42,58)(44,60), (2,34)(4,36)(6,38)(8,40)(10,42)(12,44)(14,46)(16,48)(18,50)(20,52)(22,54)(24,56)(26,58)(28,60)(30,62)(32,64), (2,4)(6,8)(10,12)(14,16)(18,20)(22,24)(26,28)(30,32)(34,36)(38,40)(42,44)(46,48)(50,52)(54,56)(58,60)(62,64), (2,10,18,26,34,42,50,58)(4,12,20,28,36,44,52,60)(5,21,37,53)(6,30,54,14,38,62,22,46)(7,23,39,55)(8,32,56,16,40,64,24,48)(9,41)(11,43)(13,61,45,29)(15,63,47,31)(25,57)(27,59), (2,6)(4,8)(5,13)(7,15)(9,25)(10,30)(11,27)(12,32)(14,26)(16,28)(17,49)(18,54)(19,51)(20,56)(21,61)(22,50)(23,63)(24,52)(29,53)(31,55)(34,38)(36,40)(37,45)(39,47)(41,57)(42,62)(43,59)(44,64)(46,58)(48,60), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (3,35)(4,36)(7,39)(8,40)(11,43)(12,44)(15,47)(16,48)(19,51)(20,52)(23,55)(24,56)(27,59)(28,60)(31,63)(32,64) >;
 
Copy content gap:G := Group( (1,2)(3,4)(5,14)(6,13)(7,16)(8,15)(9,26)(10,25)(11,28)(12,27)(17,50)(18,49)(19,52)(20,51)(21,62)(22,61)(23,64)(24,63)(29,54)(30,53)(31,56)(32,55)(33,34)(35,36)(37,46)(38,45)(39,48)(40,47)(41,58)(42,57)(43,60)(44,59), (2,18,34,50)(4,20,36,52)(5,37)(6,54,38,22)(7,39)(8,56,40,24)(10,26,42,58)(12,28,44,60)(13,45)(14,62,46,30)(15,47)(16,64,48,32)(21,53)(23,55)(29,61)(31,63), (1,13)(3,15)(5,9)(6,14)(7,11)(8,16)(10,26)(12,28)(17,61)(18,50)(19,63)(20,52)(21,57)(22,62)(23,59)(24,64)(25,53)(27,55)(29,49)(30,54)(31,51)(32,56)(33,45)(35,47)(37,41)(38,46)(39,43)(40,48)(42,58)(44,60), (2,34)(4,36)(6,38)(8,40)(10,42)(12,44)(14,46)(16,48)(18,50)(20,52)(22,54)(24,56)(26,58)(28,60)(30,62)(32,64), (2,4)(6,8)(10,12)(14,16)(18,20)(22,24)(26,28)(30,32)(34,36)(38,40)(42,44)(46,48)(50,52)(54,56)(58,60)(62,64), (2,10,18,26,34,42,50,58)(4,12,20,28,36,44,52,60)(5,21,37,53)(6,30,54,14,38,62,22,46)(7,23,39,55)(8,32,56,16,40,64,24,48)(9,41)(11,43)(13,61,45,29)(15,63,47,31)(25,57)(27,59), (2,6)(4,8)(5,13)(7,15)(9,25)(10,30)(11,27)(12,32)(14,26)(16,28)(17,49)(18,54)(19,51)(20,56)(21,61)(22,50)(23,63)(24,52)(29,53)(31,55)(34,38)(36,40)(37,45)(39,47)(41,57)(42,62)(43,59)(44,64)(46,58)(48,60), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (3,35)(4,36)(7,39)(8,40)(11,43)(12,44)(15,47)(16,48)(19,51)(20,52)(23,55)(24,56)(27,59)(28,60)(31,63)(32,64) );
 
Copy content sage:G = PermutationGroup(['(1,2)(3,4)(5,14)(6,13)(7,16)(8,15)(9,26)(10,25)(11,28)(12,27)(17,50)(18,49)(19,52)(20,51)(21,62)(22,61)(23,64)(24,63)(29,54)(30,53)(31,56)(32,55)(33,34)(35,36)(37,46)(38,45)(39,48)(40,47)(41,58)(42,57)(43,60)(44,59)', '(2,18,34,50)(4,20,36,52)(5,37)(6,54,38,22)(7,39)(8,56,40,24)(10,26,42,58)(12,28,44,60)(13,45)(14,62,46,30)(15,47)(16,64,48,32)(21,53)(23,55)(29,61)(31,63)', '(1,13)(3,15)(5,9)(6,14)(7,11)(8,16)(10,26)(12,28)(17,61)(18,50)(19,63)(20,52)(21,57)(22,62)(23,59)(24,64)(25,53)(27,55)(29,49)(30,54)(31,51)(32,56)(33,45)(35,47)(37,41)(38,46)(39,43)(40,48)(42,58)(44,60)', '(2,34)(4,36)(6,38)(8,40)(10,42)(12,44)(14,46)(16,48)(18,50)(20,52)(22,54)(24,56)(26,58)(28,60)(30,62)(32,64)', '(2,4)(6,8)(10,12)(14,16)(18,20)(22,24)(26,28)(30,32)(34,36)(38,40)(42,44)(46,48)(50,52)(54,56)(58,60)(62,64)', '(2,10,18,26,34,42,50,58)(4,12,20,28,36,44,52,60)(5,21,37,53)(6,30,54,14,38,62,22,46)(7,23,39,55)(8,32,56,16,40,64,24,48)(9,41)(11,43)(13,61,45,29)(15,63,47,31)(25,57)(27,59)', '(2,6)(4,8)(5,13)(7,15)(9,25)(10,30)(11,27)(12,32)(14,26)(16,28)(17,49)(18,54)(19,51)(20,56)(21,61)(22,50)(23,63)(24,52)(29,53)(31,55)(34,38)(36,40)(37,45)(39,47)(41,57)(42,62)(43,59)(44,64)(46,58)(48,60)', '(1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64)', '(3,35)(4,36)(7,39)(8,40)(11,43)(12,44)(15,47)(16,48)(19,51)(20,52)(23,55)(24,56)(27,59)(28,60)(31,63)(32,64)'])
 
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $C_{16}$ . $(D_4^2.C_4)$ (2) $(C_4^2.C_2^5)$ . $D_4$ $(C_4^2.D_8)$ . $C_2^4$ (2) $(C_4^2.D_8)$ . $C_2^4$ (2) all 430
Aut. group: $\Aut(C_2\times D_{32})$ $\Aut(C_2\times Q_{64})$

Elements of the group are displayed as words in the presentation generators from the presentation above.

Homology

Abelianization: $C_{2}^{4} \times C_{4} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{9}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 1185 normal subgroups (431 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_2$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: a subgroup isomorphic to $C_2^2\times C_{16}$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_8.C_4^2$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_8^2.C_8:C_2^3$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

See the $184 \times 184$ character table (warning: may be slow to load). Alternatively, you may search for characters of this group with desired properties.

Rational character table

See the $122 \times 122$ rational character table.