Properties

Label 126000.a.5250.a1.a1
Order $ 2^{3} \cdot 3 $
Index $ 2 \cdot 3 \cdot 5^{3} \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$\SL(2,3)$
Order: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Index: \(5250\)\(\medspace = 2 \cdot 3 \cdot 5^{3} \cdot 7 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\left[ \left(\begin{array}{rrr} 19 & 7 & 8 \\ 12 & 23 & 11 \\ 17 & 11 & 18 \end{array}\right) \right], \left[ \left(\begin{array}{rrr} 11 & 13 & 12 \\ 21 & 6 & 17 \\ 12 & 9 & 7 \end{array}\right) \right], \left[ \left(\begin{array}{rrr} 0 & 1 & 23 \\ 11 & -1 & 18 \\ 2 & 23 & 1 \end{array}\right) \right], \left[ \left(\begin{array}{rrr} 20 & 22 & 16 \\ 2 & 3 & 2 \\ 1 & 0 & 12 \end{array}\right) \right]$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and solvable.

Ambient group ($G$) information

Description: $\PSU(3,5)$
Order: \(126000\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5^{3} \cdot 7 \)
Exponent: \(840\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Derived length:$0$

The ambient group is nonabelian and simple (hence nonsolvable, perfect, quasisimple, and almost simple).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\PGammaU(3,5)$, of order \(756000\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 5^{3} \cdot 7 \)
$\operatorname{Aut}(H)$ $S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$W$$S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$\GL(2,3)$
Normal closure:$\PSU(3,5)$
Core:$C_1$
Minimal over-subgroups:$\SL(2,5)$$\GL(2,3)$
Maximal under-subgroups:$Q_8$$C_6$

Other information

Number of subgroups in this conjugacy class$2625$
Möbius function$0$
Projective image$\PSU(3,5)$