Properties

Label 1260.101.9.a1.a1
Order $ 2^{2} \cdot 5 \cdot 7 $
Index $ 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5\times D_{14}$
Order: \(140\)\(\medspace = 2^{2} \cdot 5 \cdot 7 \)
Index: \(9\)\(\medspace = 3^{2} \)
Exponent: \(70\)\(\medspace = 2 \cdot 5 \cdot 7 \)
Generators: $a, c^{63}, c^{15}, b^{3}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, a Hall subgroup, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Ambient group ($G$) information

Description: $C_{105}:D_6$
Order: \(1260\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \cdot 7 \)
Exponent: \(210\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_4\times \AGL(2,3)\times F_7$
$\operatorname{Aut}(H)$ $D_{14}:C_{12}$, of order \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \)
$\operatorname{res}(S)$$C_4\times F_7$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(48\)\(\medspace = 2^{4} \cdot 3 \)
$W$$D_7$, of order \(14\)\(\medspace = 2 \cdot 7 \)

Related subgroups

Centralizer:$C_{10}$
Normalizer:$C_5\times D_{14}$
Normal closure:$C_{105}:D_6$
Core:$C_5\times D_7$
Minimal over-subgroups:$C_{15}:D_{14}$$C_{15}:D_{14}$$C_{15}:D_{14}$$C_{15}:D_{14}$
Maximal under-subgroups:$C_5\times D_7$$C_{70}$$C_5\times D_7$$D_{14}$$C_2\times C_{10}$

Other information

Number of subgroups in this conjugacy class$9$
Möbius function$3$
Projective image$C_{21}:D_6$