Properties

Label 1248.1282.32.a1
Order $ 3 \cdot 13 $
Index $ 2^{5} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{39}$
Order: \(39\)\(\medspace = 3 \cdot 13 \)
Index: \(32\)\(\medspace = 2^{5} \)
Exponent: \(39\)\(\medspace = 3 \cdot 13 \)
Generators: $c^{26}, c^{6}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), a semidirect factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 3,13$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), and a Hall subgroup.

Ambient group ($G$) information

Description: $C_{78}:C_4^2$
Order: \(1248\)\(\medspace = 2^{5} \cdot 3 \cdot 13 \)
Exponent: \(156\)\(\medspace = 2^{2} \cdot 3 \cdot 13 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $C_2\times C_4^2$
Order: \(32\)\(\medspace = 2^{5} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $C_2^6:S_4$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \)
Outer Automorphisms: $C_2^6:S_4$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and a $p$-group (hence elementary and hyperelementary).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{26}.(C_2^3\times C_6).C_2^4$
$\operatorname{Aut}(H)$ $C_2\times C_{12}$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2\times C_{12}$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(832\)\(\medspace = 2^{6} \cdot 13 \)
$W$$C_4$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_2\times C_{156}$
Normalizer:$C_{78}:C_4^2$
Complements:$C_2\times C_4^2$
Minimal over-subgroups:$C_{78}$$C_{78}$$C_3\times D_{13}$$C_3\times D_{13}$
Maximal under-subgroups:$C_{13}$$C_3$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_{26}:C_4^2$