Properties

Label 1248.1282.39.a1
Order $ 2^{5} $
Index $ 3 \cdot 13 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_4^2$
Order: \(32\)\(\medspace = 2^{5} \)
Index: \(39\)\(\medspace = 3 \cdot 13 \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $a, b, c^{39}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $2$-Sylow subgroup (hence a Hall subgroup), and a $p$-group (hence elementary and hyperelementary).

Ambient group ($G$) information

Description: $C_{78}:C_4^2$
Order: \(1248\)\(\medspace = 2^{5} \cdot 3 \cdot 13 \)
Exponent: \(156\)\(\medspace = 2^{2} \cdot 3 \cdot 13 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{26}.(C_2^3\times C_6).C_2^4$
$\operatorname{Aut}(H)$ $C_2^6:S_4$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \)
$\operatorname{res}(S)$$C_2\wr C_2^2$, of order \(64\)\(\medspace = 2^{6} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(24\)\(\medspace = 2^{3} \cdot 3 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_2\times C_4\times C_{12}$
Normalizer:$C_2\times C_4\times C_{12}$
Normal closure:$C_{26}:C_4^2$
Core:$C_2\times C_4$
Minimal over-subgroups:$C_{26}:C_4^2$$C_2\times C_4\times C_{12}$
Maximal under-subgroups:$C_2^2\times C_4$$C_2^2\times C_4$$C_4^2$

Other information

Number of subgroups in this autjugacy class$13$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$1$
Projective image$C_{13}:C_{12}$