Subgroup ($H$) information
Description: | $C_2\times C_4^2$ |
Order: | \(32\)\(\medspace = 2^{5} \) |
Index: | \(39\)\(\medspace = 3 \cdot 13 \) |
Exponent: | \(4\)\(\medspace = 2^{2} \) |
Generators: |
$a, b, c^{39}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $2$-Sylow subgroup (hence a Hall subgroup), and a $p$-group (hence elementary and hyperelementary).
Ambient group ($G$) information
Description: | $C_{78}:C_4^2$ |
Order: | \(1248\)\(\medspace = 2^{5} \cdot 3 \cdot 13 \) |
Exponent: | \(156\)\(\medspace = 2^{2} \cdot 3 \cdot 13 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_{26}.(C_2^3\times C_6).C_2^4$ |
$\operatorname{Aut}(H)$ | $C_2^6:S_4$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \) |
$\operatorname{res}(S)$ | $C_2\wr C_2^2$, of order \(64\)\(\medspace = 2^{6} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
$W$ | $C_1$, of order $1$ |
Related subgroups
Other information
Number of subgroups in this autjugacy class | $13$ |
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | $1$ |
Projective image | $C_{13}:C_{12}$ |