Properties

Label 12352.1674.4.d1.c1
Order $ 2^{4} \cdot 193 $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{193}:C_{16}$
Order: \(3088\)\(\medspace = 2^{4} \cdot 193 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(3088\)\(\medspace = 2^{4} \cdot 193 \)
Generators: $a^{8}b^{580}, b^{4}, a^{4}b^{732}, a^{2}b^{768}, ab^{2}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, a direct factor, nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $C_{772}:C_{16}$
Order: \(12352\)\(\medspace = 2^{6} \cdot 193 \)
Exponent: \(3088\)\(\medspace = 2^{4} \cdot 193 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Quotient group ($Q$) structure

Description: $C_4$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{386}.C_{96}.C_2^3$
$\operatorname{Aut}(H)$ $F_{193}$, of order \(37056\)\(\medspace = 2^{6} \cdot 3 \cdot 193 \)
$W$$C_{193}:C_{16}$, of order \(3088\)\(\medspace = 2^{4} \cdot 193 \)

Related subgroups

Centralizer:$C_4$
Normalizer:$C_{772}:C_{16}$
Complements:$C_4$ $C_4$ $C_4$ $C_4$
Minimal over-subgroups:$C_{386}:C_{16}$
Maximal under-subgroups:$C_{193}:C_8$$C_{16}$
Autjugate subgroups:12352.1674.4.d1.a112352.1674.4.d1.b112352.1674.4.d1.d1

Other information

Möbius function$0$
Projective image$C_{772}:C_{16}$