Properties

Label 12352.1632.8.f1.e1
Order $ 2^{3} \cdot 193 $
Index $ 2^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{193}:C_8$
Order: \(1544\)\(\medspace = 2^{3} \cdot 193 \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(1544\)\(\medspace = 2^{3} \cdot 193 \)
Generators: $a, a^{2}, b^{8}, a^{4}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, a direct factor, nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $C_{1544}:C_8$
Order: \(12352\)\(\medspace = 2^{6} \cdot 193 \)
Exponent: \(1544\)\(\medspace = 2^{3} \cdot 193 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Quotient group ($Q$) structure

Description: $C_8$
Order: \(8\)\(\medspace = 2^{3} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Automorphism Group: $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
Outer Automorphisms: $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{772}.C_{96}.C_2^4$
$\operatorname{Aut}(H)$ $F_{193}$, of order \(37056\)\(\medspace = 2^{6} \cdot 3 \cdot 193 \)
$W$$C_{193}:C_8$, of order \(1544\)\(\medspace = 2^{3} \cdot 193 \)

Related subgroups

Centralizer:$C_8$
Normalizer:$C_{1544}:C_8$
Complements:$C_8$ $C_8$ $C_8$ $C_8$ $C_8$ $C_8$ $C_8$ $C_8$
Minimal over-subgroups:$C_{386}:C_8$
Maximal under-subgroups:$C_{193}:C_4$$C_8$
Autjugate subgroups:12352.1632.8.f1.a112352.1632.8.f1.b112352.1632.8.f1.c112352.1632.8.f1.d112352.1632.8.f1.f112352.1632.8.f1.g112352.1632.8.f1.h1

Other information

Möbius function$0$
Projective image$C_{1544}:C_8$