Properties

Label 12348.x.9.a1.a1
Order $ 2^{2} \cdot 7^{3} $
Index $ 3^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_7^2:D_{14}$
Order: \(1372\)\(\medspace = 2^{2} \cdot 7^{3} \)
Index: \(9\)\(\medspace = 3^{2} \)
Exponent: \(14\)\(\medspace = 2 \cdot 7 \)
Generators: $a, b^{6}d^{18}, c, b^{21}, d^{3}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, a Hall subgroup, and supersolvable (hence solvable and monomial).

Ambient group ($G$) information

Description: $\He_7:C_6^2$
Order: \(12348\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 7^{3} \)
Exponent: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Quotient group ($Q$) structure

Description: $C_3^2$
Order: \(9\)\(\medspace = 3^{2} \)
Exponent: \(3\)
Automorphism Group: $\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
Outer Automorphisms: $\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$\He_7.C_3^3.C_2^3$
$\operatorname{Aut}(H)$ $\He_7:C_6\wr C_2$, of order \(24696\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 7^{3} \)
$W$$C_7^2:(C_3\times D_{14})$, of order \(4116\)\(\medspace = 2^{2} \cdot 3 \cdot 7^{3} \)

Related subgroups

Centralizer:$C_3$
Normalizer:$\He_7:C_6^2$
Complements:$C_3^2$
Minimal over-subgroups:$C_{21}.D_7^2$$C_7^2:(C_3\times D_{14})$$C_7^2:(C_3\times D_{14})$$C_7^2:(C_3\times D_{14})$
Maximal under-subgroups:$C_7^2:C_{14}$$C_7^2:D_7$$C_7^2:C_{14}$$D_7^2$$D_7^2$

Other information

Möbius function$3$
Projective image$\He_7:C_6^2$