Properties

Label 12348.x.18.b1.a1
Order $ 2 \cdot 7^{3} $
Index $ 2 \cdot 3^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_7^2:D_7$
Order: \(686\)\(\medspace = 2 \cdot 7^{3} \)
Index: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Exponent: \(14\)\(\medspace = 2 \cdot 7 \)
Generators: $a, c, d^{3}, b^{6}d^{18}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, and supersolvable (hence solvable and monomial).

Ambient group ($G$) information

Description: $\He_7:C_6^2$
Order: \(12348\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 7^{3} \)
Exponent: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Quotient group ($Q$) structure

Description: $C_3\times C_6$
Order: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
Outer Automorphisms: $\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 3$ (hence hyperelementary), and metacyclic.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$\He_7.C_3^3.C_2^3$
$\operatorname{Aut}(H)$ $C_7^2.\GL(2,7)$, of order \(98784\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 7^{3} \)
$W$$D_7\times F_7$, of order \(588\)\(\medspace = 2^{2} \cdot 3 \cdot 7^{2} \)

Related subgroups

Centralizer:$C_{21}$
Normalizer:$\He_7:C_6^2$
Complements:$C_3\times C_6$ $C_3\times C_6$
Minimal over-subgroups:$\He_7:C_6$$C_7^2:F_7$$C_7^2:F_7$$C_7^2:F_7$$C_7^2:D_{14}$
Maximal under-subgroups:$\He_7$$C_7\times D_7$$C_7\times D_7$$C_7\times D_7$

Other information

Möbius function$-3$
Projective image$\He_7:C_6^2$