Subgroup ($H$) information
Description: | $C_7^3:C_6^2$ |
Order: | \(12348\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 7^{3} \) |
Index: | $1$ |
Exponent: | \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \) |
Generators: |
$a^{3}, cd^{4}, a^{2}, b^{14}, b^{21}, d, b^{6}$
|
Derived length: | $2$ |
The subgroup is the radical (hence characteristic, normal, and solvable), a direct factor, nonabelian, a Hall subgroup, supersolvable (hence monomial), metabelian, and an A-group.
Ambient group ($G$) information
Description: | $C_7^3:C_6^2$ |
Order: | \(12348\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 7^{3} \) |
Exponent: | \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.
Quotient group ($Q$) structure
Description: | $C_1$ |
Order: | $1$ |
Exponent: | $1$ |
Automorphism Group: | $C_1$, of order $1$ |
Outer Automorphisms: | $C_1$, of order $1$ |
Derived length: | $0$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_2.F_7\wr S_3$, of order \(889056\)\(\medspace = 2^{5} \cdot 3^{4} \cdot 7^{3} \) |
$\operatorname{Aut}(H)$ | $C_2.F_7\wr S_3$, of order \(889056\)\(\medspace = 2^{5} \cdot 3^{4} \cdot 7^{3} \) |
$W$ | $C_7^3:(C_3\times C_6)$, of order \(6174\)\(\medspace = 2 \cdot 3^{2} \cdot 7^{3} \) |
Related subgroups
Centralizer: | $C_2$ | ||||
Normalizer: | $C_7^3:C_6^2$ | ||||
Complements: | $C_1$ | ||||
Maximal under-subgroups: | $C_2\times C_7^3:C_3^2$ | $C_7^3:(C_3\times C_6)$ | $C_2\times C_7^3:C_6$ | $C_2\times C_7^3:C_6$ | $C_7^2:C_6^2$ |
Other information
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | $1$ |
Projective image | $C_7^3:(C_3\times C_6)$ |