Subgroup ($H$) information
Description: | $C_{15}\times C_{30}$ |
Order: | \(450\)\(\medspace = 2 \cdot 3^{2} \cdot 5^{2} \) |
Index: | \(271\) |
Exponent: | \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \) |
Generators: |
$b^{4065}, b^{5420}, a^{3}, a^{10}, b^{1626}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is maximal, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a Hall subgroup, and metacyclic.
Ambient group ($G$) information
Description: | $C_{4065}:C_{30}$ |
Order: | \(121950\)\(\medspace = 2 \cdot 3^{2} \cdot 5^{2} \cdot 271 \) |
Exponent: | \(8130\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 271 \) |
Derived length: | $2$ |
The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_{4065}.C_{270}.C_2^3$ |
$\operatorname{Aut}(H)$ | $\GL(2,3)\times \GL(2,5)$, of order \(23040\)\(\medspace = 2^{9} \cdot 3^{2} \cdot 5 \) |
$W$ | $C_1$, of order $1$ |
Related subgroups
Other information
Number of subgroups in this autjugacy class | $271$ |
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | $-1$ |
Projective image | $C_{271}:C_{15}$ |