Properties

Label 1216.389.38.c1.a1
Order $ 2^{5} $
Index $ 2 \cdot 19 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{32}$
Order: \(32\)\(\medspace = 2^{5} \)
Index: \(38\)\(\medspace = 2 \cdot 19 \)
Exponent: \(32\)\(\medspace = 2^{5} \)
Generators: $b$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.

Ambient group ($G$) information

Description: $C_{19}:Q_{64}$
Order: \(1216\)\(\medspace = 2^{6} \cdot 19 \)
Exponent: \(608\)\(\medspace = 2^{5} \cdot 19 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{152}.C_{36}.C_2^4$
$\operatorname{Aut}(H)$ $C_2\times C_8$, of order \(16\)\(\medspace = 2^{4} \)
$\operatorname{res}(S)$$C_2\times C_8$, of order \(16\)\(\medspace = 2^{4} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_{32}$
Normalizer:$Q_{64}$
Normal closure:$C_{19}:C_{32}$
Core:$C_{16}$
Minimal over-subgroups:$C_{19}:C_{32}$$Q_{64}$
Maximal under-subgroups:$C_{16}$

Other information

Number of subgroups in this conjugacy class$19$
Möbius function$1$
Projective image$C_{19}:D_{16}$