Subgroup ($H$) information
| Description: | $C_{32}$ |
| Order: | \(32\)\(\medspace = 2^{5} \) |
| Index: | \(38\)\(\medspace = 2 \cdot 19 \) |
| Exponent: | \(32\)\(\medspace = 2^{5} \) |
| Generators: |
$b$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.
Ambient group ($G$) information
| Description: | $C_{19}:Q_{64}$ |
| Order: | \(1216\)\(\medspace = 2^{6} \cdot 19 \) |
| Exponent: | \(608\)\(\medspace = 2^{5} \cdot 19 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_{152}.C_{36}.C_2^4$ |
| $\operatorname{Aut}(H)$ | $C_2\times C_8$, of order \(16\)\(\medspace = 2^{4} \) |
| $\operatorname{res}(S)$ | $C_2\times C_8$, of order \(16\)\(\medspace = 2^{4} \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(288\)\(\medspace = 2^{5} \cdot 3^{2} \) |
| $W$ | $C_2$, of order \(2\) |
Related subgroups
| Centralizer: | $C_{32}$ | |
| Normalizer: | $Q_{64}$ | |
| Normal closure: | $C_{19}:C_{32}$ | |
| Core: | $C_{16}$ | |
| Minimal over-subgroups: | $C_{19}:C_{32}$ | $Q_{64}$ |
| Maximal under-subgroups: | $C_{16}$ |
Other information
| Number of subgroups in this conjugacy class | $19$ |
| Möbius function | $1$ |
| Projective image | $C_{19}:D_{16}$ |