Properties

Label 1216.338.4.a1.a1
Order $ 2^{4} \cdot 19 $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$D_4\times C_{38}$
Order: \(304\)\(\medspace = 2^{4} \cdot 19 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(76\)\(\medspace = 2^{2} \cdot 19 \)
Generators: $d^{2}, c, d^{19}, b^{2}, a^{2}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $(C_2\times C_4).D_{76}$
Order: \(1216\)\(\medspace = 2^{6} \cdot 19 \)
Exponent: \(152\)\(\medspace = 2^{3} \cdot 19 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{19}.(C_{18}\times D_4).C_2^4$
$\operatorname{Aut}(H)$ $C_{18}\times C_2\wr C_2^2$, of order \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2^5:C_{18}$, of order \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(76\)\(\medspace = 2^{2} \cdot 19 \)
$W$$C_2^2:C_4$, of order \(16\)\(\medspace = 2^{4} \)

Related subgroups

Centralizer:$C_2\times C_{38}$
Normalizer:$(C_2\times C_4).D_{76}$
Minimal over-subgroups:$C_2^3:C_{76}$$C_2^3.D_{38}$$C_{76}.D_4$
Maximal under-subgroups:$C_2^2\times C_{38}$$C_2^2\times C_{38}$$C_2\times C_{76}$$D_4\times C_{19}$$C_2\times D_4$

Other information

Möbius function$2$
Projective image$C_2^2.D_{76}$