Subgroup ($H$) information
| Description: | $C_{76}.D_4$ |
| Order: | \(608\)\(\medspace = 2^{5} \cdot 19 \) |
| Index: | \(2\) |
| Exponent: | \(152\)\(\medspace = 2^{3} \cdot 19 \) |
| Generators: |
$b^{2}c, c, d^{2}, a^{2}d^{19}, d^{19}, ab$
|
| Derived length: | $2$ |
The subgroup is characteristic (hence normal), maximal, nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Ambient group ($G$) information
| Description: | $(C_2\times C_4).D_{76}$ |
| Order: | \(1216\)\(\medspace = 2^{6} \cdot 19 \) |
| Exponent: | \(152\)\(\medspace = 2^{3} \cdot 19 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
| Description: | $C_2$ |
| Order: | \(2\) |
| Exponent: | \(2\) |
| Automorphism Group: | $C_1$, of order $1$ |
| Outer Automorphisms: | $C_1$, of order $1$ |
| Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_{19}.(C_{18}\times D_4).C_2^4$ |
| $\operatorname{Aut}(H)$ | $(C_{38}\times D_4).C_9.C_2^4$ |
| $\card{\operatorname{res}(\operatorname{Aut}(G))}$ | \(21888\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 19 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(2\) |
| $W$ | $C_2^2.D_{76}$, of order \(608\)\(\medspace = 2^{5} \cdot 19 \) |
Related subgroups
| Centralizer: | $C_2$ | ||
| Normalizer: | $(C_2\times C_4).D_{76}$ | ||
| Minimal over-subgroups: | $(C_2\times C_4).D_{76}$ | ||
| Maximal under-subgroups: | $D_4\times C_{38}$ | $C_{19}:\OD_{16}$ | $\OD_{16}:C_2$ |
Other information
| Möbius function | $-1$ |
| Projective image | $C_2^2.D_{76}$ |