Properties

Label 1216.338.2.c1.a1
Order $ 2^{5} \cdot 19 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{76}.D_4$
Order: \(608\)\(\medspace = 2^{5} \cdot 19 \)
Index: \(2\)
Exponent: \(152\)\(\medspace = 2^{3} \cdot 19 \)
Generators: $b^{2}c, c, d^{2}, a^{2}d^{19}, d^{19}, ab$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $(C_2\times C_4).D_{76}$
Order: \(1216\)\(\medspace = 2^{6} \cdot 19 \)
Exponent: \(152\)\(\medspace = 2^{3} \cdot 19 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{19}.(C_{18}\times D_4).C_2^4$
$\operatorname{Aut}(H)$ $(C_{38}\times D_4).C_9.C_2^4$
$\card{\operatorname{res}(\operatorname{Aut}(G))}$\(21888\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 19 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$C_2^2.D_{76}$, of order \(608\)\(\medspace = 2^{5} \cdot 19 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$(C_2\times C_4).D_{76}$
Minimal over-subgroups:$(C_2\times C_4).D_{76}$
Maximal under-subgroups:$D_4\times C_{38}$$C_{19}:\OD_{16}$$\OD_{16}:C_2$

Other information

Möbius function$-1$
Projective image$C_2^2.D_{76}$