Properties

Label 12100.r.22.a1
Order $ 2 \cdot 5^{2} \cdot 11 $
Index $ 2 \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{110}:C_5$
Order: \(550\)\(\medspace = 2 \cdot 5^{2} \cdot 11 \)
Index: \(22\)\(\medspace = 2 \cdot 11 \)
Exponent: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Generators: $b^{55}, b^{22}, b^{10}, a^{2}c^{7}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 5$, and an A-group.

Ambient group ($G$) information

Description: $C_{11}^2:C_{10}^2$
Order: \(12100\)\(\medspace = 2^{2} \cdot 5^{2} \cdot 11^{2} \)
Exponent: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$F_{11}^2:C_2^2$, of order \(48400\)\(\medspace = 2^{4} \cdot 5^{2} \cdot 11^{2} \)
$\operatorname{Aut}(H)$ $F_5\times F_{11}$, of order \(2200\)\(\medspace = 2^{3} \cdot 5^{2} \cdot 11 \)
$W$$F_{11}$, of order \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)

Related subgroups

Centralizer:$C_{10}$
Normalizer:$C_{10}\times F_{11}$
Normal closure:$C_2\times C_{11}^2:C_5^2$
Core:$C_{11}:C_{10}$
Minimal over-subgroups:$C_2\times C_{11}^2:C_5^2$$C_{10}\times F_{11}$
Maximal under-subgroups:$C_{55}:C_5$$C_{11}:C_{10}$$C_{110}$$C_{11}:C_{10}$$C_{11}:C_{10}$$C_{11}:C_{10}$$C_{11}:C_{10}$$C_5\times C_{10}$

Other information

Number of subgroups in this autjugacy class$22$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$1$
Projective image$C_{11}:(C_5\times F_{11})$