Subgroup ($H$) information
| Description: | $C_{110}:C_5$ |
| Order: | \(550\)\(\medspace = 2 \cdot 5^{2} \cdot 11 \) |
| Index: | \(22\)\(\medspace = 2 \cdot 11 \) |
| Exponent: | \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \) |
| Generators: |
$b^{55}, b^{22}, b^{10}, a^{2}c^{7}$
|
| Derived length: | $2$ |
The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 5$, and an A-group.
Ambient group ($G$) information
| Description: | $C_{11}^2:C_{10}^2$ |
| Order: | \(12100\)\(\medspace = 2^{2} \cdot 5^{2} \cdot 11^{2} \) |
| Exponent: | \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $F_{11}^2:C_2^2$, of order \(48400\)\(\medspace = 2^{4} \cdot 5^{2} \cdot 11^{2} \) |
| $\operatorname{Aut}(H)$ | $F_5\times F_{11}$, of order \(2200\)\(\medspace = 2^{3} \cdot 5^{2} \cdot 11 \) |
| $W$ | $F_{11}$, of order \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $22$ |
| Number of conjugacy classes in this autjugacy class | $2$ |
| Möbius function | $1$ |
| Projective image | $C_{11}:(C_5\times F_{11})$ |