Properties

Label 12100.r.2.a1
Order $ 2 \cdot 5^{2} \cdot 11^{2} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_{11}^2:C_5^2$
Order: \(6050\)\(\medspace = 2 \cdot 5^{2} \cdot 11^{2} \)
Index: \(2\)
Exponent: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Generators: $b^{55}, b^{22}, b^{10}, a^{2}, c$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_{11}^2:C_{10}^2$
Order: \(12100\)\(\medspace = 2^{2} \cdot 5^{2} \cdot 11^{2} \)
Exponent: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$F_{11}^2:C_2^2$, of order \(48400\)\(\medspace = 2^{4} \cdot 5^{2} \cdot 11^{2} \)
$\operatorname{Aut}(H)$ $F_{11}\wr C_2$, of order \(24200\)\(\medspace = 2^{3} \cdot 5^{2} \cdot 11^{2} \)
$W$$C_{11}:(C_5\times F_{11})$, of order \(6050\)\(\medspace = 2 \cdot 5^{2} \cdot 11^{2} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_{11}^2:C_{10}^2$
Complements:$C_2$
Minimal over-subgroups:$C_{11}^2:C_{10}^2$
Maximal under-subgroups:$C_{11}^2:C_5^2$$C_{11}:C_{110}$$C_{11}^2:C_{10}$$C_{11}^2:C_{10}$$C_{11}^2:C_{10}$$C_{110}:C_5$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$-1$
Projective image$C_{11}:(C_5\times F_{11})$