Subgroup ($H$) information
| Description: | $C_{10}\times D_{10}$ |
| Order: | \(200\)\(\medspace = 2^{3} \cdot 5^{2} \) |
| Index: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Exponent: | \(10\)\(\medspace = 2 \cdot 5 \) |
| Generators: |
$a, c^{30}, b^{2}, b^{5}, c^{12}$
|
| Derived length: | $2$ |
The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.
Ambient group ($G$) information
| Description: | $C_{10}\times D_{60}$ |
| Order: | \(1200\)\(\medspace = 2^{4} \cdot 3 \cdot 5^{2} \) |
| Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_{15}:(C_2\times C_4^2\times C_2\wr C_2^2)$ |
| $\operatorname{Aut}(H)$ | $C_4\times F_5\times S_4$, of order \(1920\)\(\medspace = 2^{7} \cdot 3 \cdot 5 \) |
| $\operatorname{res}(S)$ | $D_{20}:C_4^2$, of order \(640\)\(\medspace = 2^{7} \cdot 5 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(8\)\(\medspace = 2^{3} \) |
| $W$ | $D_{10}$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $6$ |
| Number of conjugacy classes in this autjugacy class | $2$ |
| Möbius function | $1$ |
| Projective image | $D_{30}$ |