Properties

Label 1192464.a.2184.b1
Order $ 2 \cdot 3 \cdot 7 \cdot 13 $
Index $ 2^{3} \cdot 3 \cdot 7 \cdot 13 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{13}:C_{42}$
Order: \(546\)\(\medspace = 2 \cdot 3 \cdot 7 \cdot 13 \)
Index: \(2184\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \cdot 13 \)
Exponent: \(546\)\(\medspace = 2 \cdot 3 \cdot 7 \cdot 13 \)
Generators: $\left[ \left(\begin{array}{rrrr} 4 & 3 & 4 & 10 \\ 12 & 5 & 12 & 8 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & 4 & 7 \end{array}\right) \right], \left[ \left(\begin{array}{rrrr} 6 & 11 & 5 & 6 \\ 5 & 1 & 2 & 10 \\ 7 & 2 & 10 & 12 \\ 5 & 1 & 9 & 6 \end{array}\right) \right], \left[ \left(\begin{array}{rrrr} 10 & 9 & 0 & 0 \\ 10 & 0 & 0 & 0 \\ 0 & 0 & 10 & 4 \\ 0 & 0 & 3 & 0 \end{array}\right) \right], \left[ \left(\begin{array}{rrrr} 5 & 0 & 1 & 0 \\ 0 & 5 & 0 & 12 \\ 0 & 0 & 8 & 0 \\ 0 & 0 & 0 & 8 \end{array}\right) \right]$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian and a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group).

Ambient group ($G$) information

Description: $\PSL(2,13)^2$
Order: \(1192464\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 13^{2} \)
Exponent: \(546\)\(\medspace = 2 \cdot 3 \cdot 7 \cdot 13 \)
Derived length:$0$

The ambient group is nonabelian, an A-group, and perfect (hence nonsolvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\PGL(2,13)\wr C_2$, of order \(9539712\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 7^{2} \cdot 13^{2} \)
$\operatorname{Aut}(H)$ $C_6\times F_{13}$, of order \(936\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 13 \)
$W$$C_{26}:C_6$, of order \(156\)\(\medspace = 2^{2} \cdot 3 \cdot 13 \)

Related subgroups

Centralizer:$C_7$
Normalizer:$D_{91}:C_6$
Normal closure:$\PSL(2,13)^2$
Core:$C_1$
Minimal over-subgroups:$C_7\times \PSL(2,13)$$D_{91}:C_6$
Maximal under-subgroups:$C_{13}:C_{21}$$C_7\times D_{13}$$C_{13}:C_6$$C_{42}$

Other information

Number of subgroups in this autjugacy class$2184$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$0$
Projective image$\PSL(2,13)^2$