Properties

Label 1192464.a.170352.a1
Order $ 7 $
Index $ 2^{4} \cdot 3^{2} \cdot 7 \cdot 13^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_7$
Order: \(7\)
Index: \(170352\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 7 \cdot 13^{2} \)
Exponent: \(7\)
Generators: $\left[ \left(\begin{array}{rrrr} 2 & 0 & 2 & 0 \\ 0 & 2 & 0 & 11 \\ 12 & 0 & 6 & 0 \\ 0 & 1 & 0 & 6 \end{array}\right) \right]$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Ambient group ($G$) information

Description: $\PSL(2,13)^2$
Order: \(1192464\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 13^{2} \)
Exponent: \(546\)\(\medspace = 2 \cdot 3 \cdot 7 \cdot 13 \)
Derived length:$0$

The ambient group is nonabelian, an A-group, and perfect (hence nonsolvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\PGL(2,13)\wr C_2$, of order \(9539712\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 7^{2} \cdot 13^{2} \)
$\operatorname{Aut}(H)$ $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_7\times \PSL(2,13)$
Normalizer:$D_7\times \PSL(2,13)$
Normal closure:$\PSL(2,13)$
Core:$C_1$
Minimal over-subgroups:$C_{91}$$C_7^2$$C_{21}$$C_{14}$$D_7$$D_7$
Maximal under-subgroups:$C_1$

Other information

Number of subgroups in this autjugacy class$156$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$0$
Projective image$\PSL(2,13)^2$