Properties

Label 1192464.a.1092.a1
Order $ 2^{2} \cdot 3 \cdot 7 \cdot 13 $
Index $ 2^{2} \cdot 3 \cdot 7 \cdot 13 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$\PSL(2,13)$
Order: \(1092\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \cdot 13 \)
Index: \(1092\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \cdot 13 \)
Exponent: \(546\)\(\medspace = 2 \cdot 3 \cdot 7 \cdot 13 \)
Generators: $\left[ \left(\begin{array}{rrrr} 12 & 0 & 3 & 0 \\ 0 & 12 & 0 & 10 \\ 8 & 0 & 1 & 0 \\ 0 & 5 & 0 & 1 \end{array}\right) \right], \left[ \left(\begin{array}{rrrr} 3 & 0 & 12 & 0 \\ 0 & 3 & 0 & 1 \\ 3 & 0 & 8 & 0 \\ 0 & 10 & 0 & 8 \end{array}\right) \right]$ Copy content Toggle raw display
Derived length: $0$

The subgroup is normal, a direct factor, nonabelian, simple (hence nonsolvable, perfect, quasisimple, and almost simple), and an A-group.

Ambient group ($G$) information

Description: $\PSL(2,13)^2$
Order: \(1192464\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 13^{2} \)
Exponent: \(546\)\(\medspace = 2 \cdot 3 \cdot 7 \cdot 13 \)
Derived length:$0$

The ambient group is nonabelian, an A-group, and perfect (hence nonsolvable).

Quotient group ($Q$) structure

Description: $\PSL(2,13)$
Order: \(1092\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \cdot 13 \)
Exponent: \(546\)\(\medspace = 2 \cdot 3 \cdot 7 \cdot 13 \)
Automorphism Group: $\PGL(2,13)$, of order \(2184\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \cdot 13 \)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $0$

The quotient is nonabelian, simple (hence nonsolvable, perfect, quasisimple, and almost simple), and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\PGL(2,13)\wr C_2$, of order \(9539712\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 7^{2} \cdot 13^{2} \)
$\operatorname{Aut}(H)$ $\PGL(2,13)$, of order \(2184\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \cdot 13 \)
$W$$\PSL(2,13)$, of order \(1092\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \cdot 13 \)

Related subgroups

Centralizer:$\PSL(2,13)$
Normalizer:$\PSL(2,13)^2$
Complements:$\PSL(2,13)$ $\PSL(2,13)$
Minimal over-subgroups:$C_{13}\times \PSL(2,13)$$C_7\times \PSL(2,13)$$C_3\times \PSL(2,13)$$C_2\times \PSL(2,13)$
Maximal under-subgroups:$C_{13}:C_6$$D_7$$A_4$$D_6$

Other information

Number of subgroups in this autjugacy class$2$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$-1092$
Projective image$\PSL(2,13)^2$