Properties

Label 1192464.a.14196.c1
Order $ 2^{2} \cdot 3 \cdot 7 $
Index $ 2^{2} \cdot 3 \cdot 7 \cdot 13^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_7\times A_4$
Order: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Index: \(14196\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \cdot 13^{2} \)
Exponent: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Generators: $\left[ \left(\begin{array}{rrrr} 9 & 1 & 0 & 0 \\ 9 & 4 & 0 & 0 \\ 0 & 0 & 9 & 12 \\ 0 & 0 & 4 & 4 \end{array}\right) \right], \left[ \left(\begin{array}{rrrr} 4 & 0 & 10 & 0 \\ 0 & 4 & 0 & 3 \\ 12 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{array}\right) \right], \left[ \left(\begin{array}{rrrr} 9 & 4 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 9 & 9 \\ 0 & 0 & 0 & 3 \end{array}\right) \right], \left[ \left(\begin{array}{rrrr} 3 & 10 & 0 & 0 \\ 12 & 10 & 0 & 0 \\ 0 & 0 & 3 & 3 \\ 0 & 0 & 1 & 10 \end{array}\right) \right]$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $\PSL(2,13)^2$
Order: \(1192464\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 13^{2} \)
Exponent: \(546\)\(\medspace = 2 \cdot 3 \cdot 7 \cdot 13 \)
Derived length:$0$

The ambient group is nonabelian, an A-group, and perfect (hence nonsolvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\PGL(2,13)\wr C_2$, of order \(9539712\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 7^{2} \cdot 13^{2} \)
$\operatorname{Aut}(H)$ $C_6\times S_4$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
$W$$C_2\times A_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_7$
Normalizer:$A_4\times D_7$
Normal closure:$\PSL(2,13)^2$
Core:$C_1$
Minimal over-subgroups:$C_7\times \PSL(2,13)$$A_4\times D_7$
Maximal under-subgroups:$C_2\times C_{14}$$C_{21}$$A_4$

Other information

Number of subgroups in this autjugacy class$14196$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$0$
Projective image$\PSL(2,13)^2$