Properties

Label 1188.61.33.a1.a1
Order $ 2^{2} \cdot 3^{2} $
Index $ 3 \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6\times S_3$
Order: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Index: \(33\)\(\medspace = 3 \cdot 11 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $a, d^{33}, c, d^{44}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Ambient group ($G$) information

Description: $C_3^2:S_3\times C_{22}$
Order: \(1188\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 11 \)
Exponent: \(66\)\(\medspace = 2 \cdot 3 \cdot 11 \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_{10}\times \AGL(2,3)$
$\operatorname{Aut}(H)$ $C_2\times D_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$\operatorname{res}(S)$$C_2\times D_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
$W$$S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)

Related subgroups

Centralizer:$C_{66}$
Normalizer:$S_3\times C_{66}$
Normal closure:$C_3^2:D_6$
Core:$C_3\times C_6$
Minimal over-subgroups:$S_3\times C_{66}$$C_3^2:D_6$
Maximal under-subgroups:$C_3\times C_6$$C_3\times S_3$$C_3\times S_3$$C_2\times C_6$$D_6$
Autjugate subgroups:1188.61.33.a1.b11188.61.33.a1.c11188.61.33.a1.d1

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$1$
Projective image$C_{33}:S_3$