Properties

Label 1188.61.11.a1.a1
Order $ 2^{2} \cdot 3^{3} $
Index $ 11 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^2:D_6$
Order: \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
Index: \(11\)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $a, c, d^{33}, b, d^{44}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is characteristic (hence normal), maximal, a direct factor, nonabelian, a Hall subgroup, and supersolvable (hence solvable and monomial).

Ambient group ($G$) information

Description: $C_3^2:S_3\times C_{22}$
Order: \(1188\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 11 \)
Exponent: \(66\)\(\medspace = 2 \cdot 3 \cdot 11 \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Quotient group ($Q$) structure

Description: $C_{11}$
Order: \(11\)
Exponent: \(11\)
Automorphism Group: $C_{10}$, of order \(10\)\(\medspace = 2 \cdot 5 \)
Outer Automorphisms: $C_{10}$, of order \(10\)\(\medspace = 2 \cdot 5 \)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_{10}\times \AGL(2,3)$
$\operatorname{Aut}(H)$ $C_2\times C_3^2:\GL(2,3)$, of order \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2\times C_3^2:\GL(2,3)$, of order \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(10\)\(\medspace = 2 \cdot 5 \)
$W$$C_3:S_3$, of order \(18\)\(\medspace = 2 \cdot 3^{2} \)

Related subgroups

Centralizer:$C_{66}$
Normalizer:$C_3^2:S_3\times C_{22}$
Complements:$C_{11}$
Minimal over-subgroups:$C_3^2:S_3\times C_{22}$
Maximal under-subgroups:$C_2\times \He_3$$C_3^2:S_3$$C_3^2:S_3$$C_6\times S_3$$C_6\times S_3$$C_6\times S_3$$C_6\times S_3$

Other information

Möbius function$-1$
Projective image$C_{33}:S_3$