Properties

Label 1188.39.66.g1.a1
Order $ 2 \cdot 3^{2} $
Index $ 2 \cdot 3 \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_9$
Order: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Index: \(66\)\(\medspace = 2 \cdot 3 \cdot 11 \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Generators: $ab, b^{2}c^{88}, c^{66}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $S_3\times D_{99}$
Order: \(1188\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 11 \)
Exponent: \(198\)\(\medspace = 2 \cdot 3^{2} \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_3\times C_{99}).C_{30}.C_2^2$
$\operatorname{Aut}(H)$ $C_9:C_6$, of order \(54\)\(\medspace = 2 \cdot 3^{3} \)
$\operatorname{res}(S)$$C_9:C_6$, of order \(54\)\(\medspace = 2 \cdot 3^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(10\)\(\medspace = 2 \cdot 5 \)
$W$$D_9$, of order \(18\)\(\medspace = 2 \cdot 3^{2} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$D_9$
Normal closure:$C_3:D_{99}$
Core:$C_3$
Minimal over-subgroups:$D_{99}$$C_3:D_9$
Maximal under-subgroups:$C_9$$S_3$

Other information

Number of subgroups in this conjugacy class$66$
Möbius function$0$
Projective image$S_3\times D_{99}$