Properties

Label 1188.39.3.a1.a1
Order $ 2^{2} \cdot 3^{2} \cdot 11 $
Index $ 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{198}$
Order: \(396\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 11 \)
Index: \(3\)
Exponent: \(198\)\(\medspace = 2 \cdot 3^{2} \cdot 11 \)
Generators: $a, c^{88}, c^{9}, b^{3}, c^{66}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is maximal, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Ambient group ($G$) information

Description: $S_3\times D_{99}$
Order: \(1188\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 11 \)
Exponent: \(198\)\(\medspace = 2 \cdot 3^{2} \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_3\times C_{99}).C_{30}.C_2^2$
$\operatorname{Aut}(H)$ $C_{99}.C_{30}.C_2^2$
$\operatorname{res}(S)$$D_{99}:C_{30}$, of order \(5940\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 5 \cdot 11 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$D_{99}$, of order \(198\)\(\medspace = 2 \cdot 3^{2} \cdot 11 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$D_{198}$
Normal closure:$S_3\times D_{99}$
Core:$D_{99}$
Minimal over-subgroups:$S_3\times D_{99}$
Maximal under-subgroups:$D_{99}$$C_{198}$$D_{99}$$D_{66}$$D_{18}$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$-1$
Projective image$S_3\times D_{99}$