Properties

Label 1188.39.11.a1.a1
Order $ 2^{2} \cdot 3^{3} $
Index $ 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$S_3\times D_9$
Order: \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
Index: \(11\)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Generators: $a, c^{66}, b^{3}, b^{2}, c^{88}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is maximal, nonabelian, a Hall subgroup, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $S_3\times D_{99}$
Order: \(1188\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 11 \)
Exponent: \(198\)\(\medspace = 2 \cdot 3^{2} \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_3\times C_{99}).C_{30}.C_2^2$
$\operatorname{Aut}(H)$ $C_3^2.S_3^2$, of order \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)
$\operatorname{res}(S)$$C_3^2.S_3^2$, of order \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(10\)\(\medspace = 2 \cdot 5 \)
$W$$S_3\times D_9$, of order \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$S_3\times D_9$
Normal closure:$S_3\times D_{99}$
Core:$S_3\times C_9$
Minimal over-subgroups:$S_3\times D_{99}$
Maximal under-subgroups:$S_3\times C_9$$C_3\times D_9$$C_3:D_9$$D_{18}$$S_3^2$

Other information

Number of subgroups in this conjugacy class$11$
Möbius function$-1$
Projective image$S_3\times D_{99}$