Properties

Label 1185408.a.384._.A
Order $ 3^{2} \cdot 7^{3} $
Index $ 2^{7} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_7^3:C_3^2$
Order: \(3087\)\(\medspace = 3^{2} \cdot 7^{3} \)
Index: \(384\)\(\medspace = 2^{7} \cdot 3 \)
Exponent: \(21\)\(\medspace = 3 \cdot 7 \)
Generators: $e^{14}f^{12}g^{6}, e^{6}f^{2}g^{10}, f^{2}g^{10}, d^{2}f^{6}g^{4}, g^{2}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group. Whether it is a direct factor or a semidirect factor has not been computed.

Ambient group ($G$) information

Description: $D_7^3.C_6^2:D_6$
Order: \(1185408\)\(\medspace = 2^{7} \cdot 3^{3} \cdot 7^{3} \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2^2\wr S_3$
Order: \(384\)\(\medspace = 2^{7} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $A_4^3.C_2^3$, of order \(13824\)\(\medspace = 2^{9} \cdot 3^{3} \)
Outer Automorphisms: $S_3\times S_4$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Derived length: $3$

The quotient is nonabelian, monomial (hence solvable), and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_7^3.C_2^4:\He_3.C_6.C_2^4$
$\operatorname{Aut}(H)$ $F_7\wr S_3$, of order \(444528\)\(\medspace = 2^{4} \cdot 3^{4} \cdot 7^{3} \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Möbius function not computed
Projective image not computed