Properties

Label 1185408.a
Order \( 2^{7} \cdot 3^{3} \cdot 7^{3} \)
Exponent \( 2^{2} \cdot 3 \cdot 7 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{3} \)
$\card{Z(G)}$ 2
$\card{\Aut(G)}$ \( 2^{9} \cdot 3^{4} \cdot 7^{3} \)
$\card{\mathrm{Out}(G)}$ \( 2^{3} \cdot 3 \)
Perm deg. $27$
Trans deg. $42$
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 27 | (1,3,6,14,20,21,4,10,15,11,17,13,19,9,8,16,18,12,7,2,5)(22,24,27,25,23,26), (1,2,4,9,14,18,16,20,11,17,19,10)(3,7)(5,12,6,13,8,15)(22,23,25,24)(26,27), (2,6,3,8,9,5)(4,11,14,16,19,7)(10,12,18,13,17,15)(20,21)(23,27,24,26) >;
 
Copy content gap:G := Group( (1,3,6,14,20,21,4,10,15,11,17,13,19,9,8,16,18,12,7,2,5)(22,24,27,25,23,26), (1,2,4,9,14,18,16,20,11,17,19,10)(3,7)(5,12,6,13,8,15)(22,23,25,24)(26,27), (2,6,3,8,9,5)(4,11,14,16,19,7)(10,12,18,13,17,15)(20,21)(23,27,24,26) );
 
Copy content sage:G = PermutationGroup(['(1,3,6,14,20,21,4,10,15,11,17,13,19,9,8,16,18,12,7,2,5)(22,24,27,25,23,26)', '(1,2,4,9,14,18,16,20,11,17,19,10)(3,7)(5,12,6,13,8,15)(22,23,25,24)(26,27)', '(2,6,3,8,9,5)(4,11,14,16,19,7)(10,12,18,13,17,15)(20,21)(23,27,24,26)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(1311773825818871817996253679734792305885898547630921570373872177763323583698992079894011212111763616498322501699773146533632478038372992618879281684850309207682842882455744309693912480259026750927154262974203327244919136101192355087243479321626650044492608260463260626582039851043755487396603912738380558808762923338596903352618173448116335463328031207543595808905398944783761561268637636320574727537129,1185408)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.7; f = G.10; g = G.12;
 

Group information

Description:$D_7^3.C_6^2:D_6$
Order: \(1185408\)\(\medspace = 2^{7} \cdot 3^{3} \cdot 7^{3} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$C_7^3.C_2^4:\He_3.C_6.C_2^4$, of order \(14224896\)\(\medspace = 2^{9} \cdot 3^{4} \cdot 7^{3} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 7, $C_3$ x 3, $C_7$ x 3
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$4$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 7 12 14 21 28 42
Elements 1 8127 15092 60480 428652 342 296352 62874 86436 87696 139356 1185408
Conjugacy classes   1 23 6 12 118 5 24 51 4 16 34 294
Divisions 1 23 5 12 71 5 12 51 4 16 22 222
Autjugacy classes 1 13 4 4 57 3 8 25 2 5 16 138

Copy content comment:Compute statistics about the characters of G
 
Copy content magma:// Outputs [<d_1,c_1>, <d_2,c_2>, ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content gap:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content sage:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i character_degrees = [c[0] for c in G.character_table()] [[n, character_degrees.count(n)] for n in set(character_degrees)]
 
Copy content sage_gap:G.CharacterDegrees()
 

Dimension 1 2 3 6 12 18 36 72 108 144 216
Irr. complex chars.   8 16 88 72 0 16 44 12 16 6 16 294
Irr. rational chars. 8 16 24 48 28 16 20 24 16 6 16 222

Minimal presentations

Permutation degree:$27$
Transitive degree:$42$
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 18 18 18
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g \mid b^{6}=c^{2}=d^{6}=e^{42}=f^{14}=g^{14}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([13, 2, 2, 3, 2, 2, 3, 2, 3, 7, 2, 7, 2, 7, 12260976, 3405117, 66, 3371318, 30821235, 15410632, 7705181, 65793004, 31745237, 18611610, 186, 39832421, 27363042, 17017447, 58404534, 32778583, 21763319, 3961288, 2005256, 266, 91982599, 38029076, 23326401, 1532603, 2342568, 410, 505448, 24058965, 14859970, 12696, 4285, 129729609, 24879682, 3453875, 5864101, 147494, 322227, 177550, 386, 103783690, 48679511, 7382268, 5333390, 72147, 708796, 348449, 41513483, 68352, 39155257, 1651167, 2476732, 458729, 504606, 466, 89945868, 146041, 31174454, 3577456, 1192541, 993810, 397591]); a,b,c,d,e,f,g := Explode([G.1, G.2, G.4, G.5, G.7, G.10, G.12]); AssignNames(~G, ["a", "b", "b2", "c", "d", "d2", "e", "e2", "e6", "f", "f2", "g", "g2"]);
 
Copy content gap:G := PcGroupCode(1311773825818871817996253679734792305885898547630921570373872177763323583698992079894011212111763616498322501699773146533632478038372992618879281684850309207682842882455744309693912480259026750927154262974203327244919136101192355087243479321626650044492608260463260626582039851043755487396603912738380558808762923338596903352618173448116335463328031207543595808905398944783761561268637636320574727537129,1185408); a := G.1; b := G.2; c := G.4; d := G.5; e := G.7; f := G.10; g := G.12;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(1311773825818871817996253679734792305885898547630921570373872177763323583698992079894011212111763616498322501699773146533632478038372992618879281684850309207682842882455744309693912480259026750927154262974203327244919136101192355087243479321626650044492608260463260626582039851043755487396603912738380558808762923338596903352618173448116335463328031207543595808905398944783761561268637636320574727537129,1185408)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.7; f = G.10; g = G.12;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(1311773825818871817996253679734792305885898547630921570373872177763323583698992079894011212111763616498322501699773146533632478038372992618879281684850309207682842882455744309693912480259026750927154262974203327244919136101192355087243479321626650044492608260463260626582039851043755487396603912738380558808762923338596903352618173448116335463328031207543595808905398944783761561268637636320574727537129,1185408)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.7; f = G.10; g = G.12;
 
Permutation group:Degree $27$ $\langle(1,3,6,14,20,21,4,10,15,11,17,13,19,9,8,16,18,12,7,2,5)(22,24,27,25,23,26) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 27 | (1,3,6,14,20,21,4,10,15,11,17,13,19,9,8,16,18,12,7,2,5)(22,24,27,25,23,26), (1,2,4,9,14,18,16,20,11,17,19,10)(3,7)(5,12,6,13,8,15)(22,23,25,24)(26,27), (2,6,3,8,9,5)(4,11,14,16,19,7)(10,12,18,13,17,15)(20,21)(23,27,24,26) >;
 
Copy content gap:G := Group( (1,3,6,14,20,21,4,10,15,11,17,13,19,9,8,16,18,12,7,2,5)(22,24,27,25,23,26), (1,2,4,9,14,18,16,20,11,17,19,10)(3,7)(5,12,6,13,8,15)(22,23,25,24)(26,27), (2,6,3,8,9,5)(4,11,14,16,19,7)(10,12,18,13,17,15)(20,21)(23,27,24,26) );
 
Copy content sage:G = PermutationGroup(['(1,3,6,14,20,21,4,10,15,11,17,13,19,9,8,16,18,12,7,2,5)(22,24,27,25,23,26)', '(1,2,4,9,14,18,16,20,11,17,19,10)(3,7)(5,12,6,13,8,15)(22,23,25,24)(26,27)', '(2,6,3,8,9,5)(4,11,14,16,19,7)(10,12,18,13,17,15)(20,21)(23,27,24,26)'])
 
Transitive group: 42T1945 more information
Direct product: not computed
Semidirect product: $C_7^3$ $\,\rtimes\,$ $(C_2^2\times C_6^2:S_4)$ more information
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $D_7^3$ . $(C_6^2:D_6)$ (4) $(D_7^3.C_3^2:S_4)$ . $C_2$ (4) $(D_7^3:C_3)$ . $(C_6:S_4)$ (4) $C_2$ . $(D_7^3.C_3^2:S_4)$ all 49

Elements of the group are displayed as words in the presentation generators from the presentation above.

Homology

Abelianization: $C_{2}^{3} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{6}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $2$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 110 normal subgroups (37 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_2$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: a subgroup isomorphic to $C_7^3:(C_6^2:A_4)$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_1$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
7-Sylow subgroup: $P_{ 7 } \simeq$ $C_7^3$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 2 larger groups in the database.

This group is a maximal quotient of 2 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

See the $294 \times 294$ character table (warning: may be slow to load). Alternatively, you may search for characters of this group with desired properties.

Rational character table

See the $222 \times 222$ rational character table (warning: may be slow to load).